This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For isomorphic hypergraphs, the induced subgraph of a subset of vertices of one graph is isomorphic to the subgraph induced by the image of the subset. (Contributed by AV, 31-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uhgrimisgrgric.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | uhgrimisgrgric | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrimisgrgric.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | grimdmrel | ⊢ Rel dom GraphIso | |
| 3 | 2 | ovrcl | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
| 5 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 6 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( iEdg ‘ 𝐻 ) = ( iEdg ‘ 𝐻 ) | |
| 8 | 1 5 6 7 | grimprop | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) ) |
| 9 | f1ofun | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → Fun 𝐹 ) | |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → Fun 𝐹 ) |
| 11 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 12 | 11 | ssex | ⊢ ( 𝑁 ⊆ 𝑉 → 𝑁 ∈ V ) |
| 13 | resfunexg | ⊢ ( ( Fun 𝐹 ∧ 𝑁 ∈ V ) → ( 𝐹 ↾ 𝑁 ) ∈ V ) | |
| 14 | 10 12 13 | syl2an | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐹 ↾ 𝑁 ) ∈ V ) |
| 15 | f1of1 | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝐹 : 𝑉 –1-1→ ( Vtx ‘ 𝐻 ) ) | |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → 𝐹 : 𝑉 –1-1→ ( Vtx ‘ 𝐻 ) ) |
| 17 | f1ores | ⊢ ( ( 𝐹 : 𝑉 –1-1→ ( Vtx ‘ 𝐻 ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) | |
| 18 | 16 17 | sylan | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) |
| 19 | simpr | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) | |
| 20 | vex | ⊢ 𝑔 ∈ V | |
| 21 | 20 | resex | ⊢ ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ∈ V |
| 22 | 21 | a1i | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ∈ V ) |
| 23 | f1of1 | ⊢ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1→ dom ( iEdg ‘ 𝐻 ) ) | |
| 24 | 23 | adantr | ⊢ ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1→ dom ( iEdg ‘ 𝐻 ) ) |
| 25 | 24 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1→ dom ( iEdg ‘ 𝐻 ) ) |
| 26 | 25 | ad2antrr | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1→ dom ( iEdg ‘ 𝐻 ) ) |
| 27 | ssrab2 | ⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) | |
| 28 | f1ores | ⊢ ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1→ dom ( iEdg ‘ 𝐻 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ ( 𝑔 “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ) | |
| 29 | 26 27 28 | sylancl | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ ( 𝑔 “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ) |
| 30 | 1 6 | uhgrf | ⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 31 | id | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) ) | |
| 32 | difssd | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) → ( 𝒫 𝑉 ∖ { ∅ } ) ⊆ 𝒫 𝑉 ) | |
| 33 | 31 32 | fssd | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ( 𝒫 𝑉 ∖ { ∅ } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝒫 𝑉 ) |
| 34 | 30 33 | syl | ⊢ ( 𝐺 ∈ UHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝒫 𝑉 ) |
| 35 | 34 | adantr | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝒫 𝑉 ) |
| 36 | 35 | anim2i | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝒫 𝑉 ) ) |
| 37 | 36 | 3adant2 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝒫 𝑉 ) ) |
| 38 | 37 | ad2antrr | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝒫 𝑉 ) ) |
| 39 | simp2l | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) | |
| 40 | 39 | anim1i | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑁 ⊆ 𝑉 ) ) |
| 41 | 40 | adantr | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ 𝑁 ⊆ 𝑉 ) ) |
| 42 | 41 | ancomd | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑁 ⊆ 𝑉 ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ) |
| 43 | simpl2r | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | |
| 44 | 43 | adantr | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 45 | uhgrimisgrgriclem | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ 𝒫 𝑉 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑗 ) ⊆ ( 𝐹 “ 𝑁 ) ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝑔 ‘ 𝑘 ) = 𝑗 ) ) ) | |
| 46 | 38 42 44 45 | syl3anc | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑗 ) ⊆ ( 𝐹 “ 𝑁 ) ) ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝑔 ‘ 𝑘 ) = 𝑗 ) ) ) |
| 47 | fveq2 | ⊢ ( 𝑥 = 𝑘 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ) | |
| 48 | 47 | sseq1d | ⊢ ( 𝑥 = 𝑘 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑁 ) ) |
| 49 | 48 | rexrab | ⊢ ( ∃ 𝑘 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑔 ‘ 𝑘 ) = 𝑗 ↔ ∃ 𝑘 ∈ dom ( iEdg ‘ 𝐺 ) ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑘 ) ⊆ 𝑁 ∧ ( 𝑔 ‘ 𝑘 ) = 𝑗 ) ) |
| 50 | 46 49 | bitr4di | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( ( 𝑗 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑗 ) ⊆ ( 𝐹 “ 𝑁 ) ) ↔ ∃ 𝑘 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑔 ‘ 𝑘 ) = 𝑗 ) ) |
| 51 | fveq2 | ⊢ ( 𝑥 = 𝑗 → ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐻 ) ‘ 𝑗 ) ) | |
| 52 | 51 | sseq1d | ⊢ ( 𝑥 = 𝑗 → ( ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) ↔ ( ( iEdg ‘ 𝐻 ) ‘ 𝑗 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) |
| 53 | 52 | elrab | ⊢ ( 𝑗 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ↔ ( 𝑗 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑗 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) |
| 54 | 53 | a1i | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑗 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ↔ ( 𝑗 ∈ dom ( iEdg ‘ 𝐻 ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ 𝑗 ) ⊆ ( 𝐹 “ 𝑁 ) ) ) ) |
| 55 | f1ofn | ⊢ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → 𝑔 Fn dom ( iEdg ‘ 𝐺 ) ) | |
| 56 | 55 27 | jctir | ⊢ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) → ( 𝑔 Fn dom ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ) ) |
| 57 | 56 | adantr | ⊢ ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( 𝑔 Fn dom ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ) ) |
| 58 | 57 | 3ad2ant2 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → ( 𝑔 Fn dom ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ) ) |
| 59 | 58 | ad2antrr | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑔 Fn dom ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ) ) |
| 60 | fvelimab | ⊢ ( ( 𝑔 Fn dom ( iEdg ‘ 𝐺 ) ∧ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑗 ∈ ( 𝑔 “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ↔ ∃ 𝑘 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑔 ‘ 𝑘 ) = 𝑗 ) ) | |
| 61 | 59 60 | syl | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑗 ∈ ( 𝑔 “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ↔ ∃ 𝑘 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑔 ‘ 𝑘 ) = 𝑗 ) ) |
| 62 | 50 54 61 | 3bitr4d | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑗 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ↔ 𝑗 ∈ ( 𝑔 “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ) ) |
| 63 | 62 | eqrdv | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } = ( 𝑔 “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ) |
| 64 | 63 | f1oeq3d | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ↔ ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ ( 𝑔 “ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ) ) |
| 65 | 29 64 | mpbird | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ) |
| 66 | ssralv | ⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom ( iEdg ‘ 𝐺 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) | |
| 67 | 27 66 | ax-mp | ⊢ ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 68 | elex | ⊢ ( 𝐺 ∈ UHGraph → 𝐺 ∈ V ) | |
| 69 | 68 | anim1i | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) |
| 70 | 69 | 3anim3i | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ) |
| 71 | 70 | anim1i | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ) |
| 72 | simpr | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | |
| 73 | fvres | ⊢ ( 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } → ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) | |
| 74 | 73 | ad2antlr | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) = ( 𝑔 ‘ 𝑖 ) ) |
| 75 | 74 | fveq2d | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
| 76 | fveq2 | ⊢ ( 𝑥 = 𝑖 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) | |
| 77 | 76 | sseq1d | ⊢ ( 𝑥 = 𝑖 → ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) |
| 78 | 77 | elrab | ⊢ ( 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ↔ ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) ) |
| 79 | 78 | simprbi | ⊢ ( 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) |
| 80 | 79 | ad2antlr | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 ) |
| 81 | resima2 | ⊢ ( ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ⊆ 𝑁 → ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | |
| 82 | 80 81 | syl | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
| 83 | 72 75 82 | 3eqtr4rd | ⊢ ( ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ∧ ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) |
| 84 | 83 | ex | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 85 | 71 84 | sylanl1 | ⊢ ( ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) ∧ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) → ( ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 86 | 85 | ralimdva | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 87 | 67 86 | syl5 | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 88 | 87 | expimpd | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 89 | 88 | 3exp1 | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → ( 𝑁 ⊆ 𝑉 → ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 90 | 89 | com25 | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → ( 𝑁 ⊆ 𝑉 → ( ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) ) ) ) |
| 91 | 90 | 3imp1 | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 92 | 91 | imp | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) |
| 93 | 65 92 | jca | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 94 | f1oeq1 | ⊢ ( ℎ = ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) → ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ↔ ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ) ) | |
| 95 | fveq1 | ⊢ ( ℎ = ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) → ( ℎ ‘ 𝑖 ) = ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) | |
| 96 | 95 | fveq2d | ⊢ ( ℎ = ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) → ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) |
| 97 | 96 | eqeq2d | ⊢ ( ℎ = ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) → ( ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ↔ ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 98 | 97 | ralbidv | ⊢ ( ℎ = ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) |
| 99 | 94 98 | anbi12d | ⊢ ( ℎ = ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) → ( ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ↔ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ( 𝑔 ↾ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ) ‘ 𝑖 ) ) ) ) ) |
| 100 | 22 93 99 | spcedv | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) |
| 101 | 19 100 | jca | ⊢ ( ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) ∧ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) → ( ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) |
| 102 | 18 101 | mpdan | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) |
| 103 | f1oeq1 | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑁 ) → ( 𝑓 : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ↔ ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ) ) | |
| 104 | imaeq1 | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑁 ) → ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) | |
| 105 | 104 | eqeq1d | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑁 ) → ( ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ↔ ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) |
| 106 | 105 | ralbidv | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑁 ) → ( ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) |
| 107 | 106 | anbi2d | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑁 ) → ( ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ↔ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) |
| 108 | 107 | exbidv | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑁 ) → ( ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ↔ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) |
| 109 | 103 108 | anbi12d | ⊢ ( 𝑓 = ( 𝐹 ↾ 𝑁 ) → ( ( 𝑓 : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ↔ ( ( 𝐹 ↾ 𝑁 ) : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( ( 𝐹 ↾ 𝑁 ) “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) ) |
| 110 | 14 102 109 | spcedv | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) |
| 111 | simpl3 | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) | |
| 112 | simpr | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → 𝑁 ⊆ 𝑉 ) | |
| 113 | f1of | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → 𝐹 : 𝑉 ⟶ ( Vtx ‘ 𝐻 ) ) | |
| 114 | 113 | fimassd | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( 𝐹 “ 𝑁 ) ⊆ ( Vtx ‘ 𝐻 ) ) |
| 115 | 114 | a1d | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( 𝑁 ⊆ 𝑉 → ( 𝐹 “ 𝑁 ) ⊆ ( Vtx ‘ 𝐻 ) ) ) |
| 116 | 115 | 3ad2ant1 | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) → ( 𝑁 ⊆ 𝑉 → ( 𝐹 “ 𝑁 ) ⊆ ( Vtx ‘ 𝐻 ) ) ) |
| 117 | 116 | imp | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐹 “ 𝑁 ) ⊆ ( Vtx ‘ 𝐻 ) ) |
| 118 | eqid | ⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } | |
| 119 | eqid | ⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } = { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } | |
| 120 | 1 5 6 7 118 119 | isubgrgrim | ⊢ ( ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ∧ ( 𝑁 ⊆ 𝑉 ∧ ( 𝐹 “ 𝑁 ) ⊆ ( Vtx ‘ 𝐻 ) ) ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) ) |
| 121 | 111 112 117 120 | syl12anc | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ ( 𝐹 “ 𝑁 ) ∧ ∃ ℎ ( ℎ : { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } –1-1-onto→ { 𝑥 ∈ dom ( iEdg ‘ 𝐻 ) ∣ ( ( iEdg ‘ 𝐻 ) ‘ 𝑥 ) ⊆ ( 𝐹 “ 𝑁 ) } ∧ ∀ 𝑖 ∈ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ⊆ 𝑁 } ( 𝑓 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) = ( ( iEdg ‘ 𝐻 ) ‘ ( ℎ ‘ 𝑖 ) ) ) ) ) ) |
| 122 | 110 121 | mpbird | ⊢ ( ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ∧ ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) |
| 123 | 122 | 3exp1 | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → ( 𝑁 ⊆ 𝑉 → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) ) ) |
| 124 | 123 | exlimdv | ⊢ ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → ( 𝑁 ⊆ 𝑉 → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) ) ) |
| 125 | 124 | imp | ⊢ ( ( 𝐹 : 𝑉 –1-1-onto→ ( Vtx ‘ 𝐻 ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ 𝐺 ) –1-1-onto→ dom ( iEdg ‘ 𝐻 ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ( ( iEdg ‘ 𝐻 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐹 “ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → ( 𝑁 ⊆ 𝑉 → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) ) |
| 126 | 8 125 | syl | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( ( 𝐺 ∈ UHGraph ∧ 𝐻 ∈ V ) → ( 𝑁 ⊆ 𝑉 → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) ) |
| 127 | 126 | expd | ⊢ ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐺 ∈ UHGraph → ( 𝐻 ∈ V → ( 𝑁 ⊆ 𝑉 → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) ) ) |
| 128 | 127 | com12 | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝐻 ∈ V → ( 𝑁 ⊆ 𝑉 → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) ) ) |
| 129 | 128 | com34 | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) → ( 𝑁 ⊆ 𝑉 → ( 𝐻 ∈ V → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) ) ) |
| 130 | 129 | 3imp | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐻 ∈ V → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) |
| 131 | 130 | adantld | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝑁 ⊆ 𝑉 ) → ( ( 𝐺 ∈ V ∧ 𝐻 ∈ V ) → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) ) |
| 132 | 4 131 | mpd | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝐹 ∈ ( 𝐺 GraphIso 𝐻 ) ∧ 𝑁 ⊆ 𝑉 ) → ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr ( 𝐹 “ 𝑁 ) ) ) |