This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For isomorphic hypergraphs, the induced subgraph of a subset of vertices of one graph is isomorphic to the subgraph induced by the image of the subset. (Contributed by AV, 31-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | uhgrimisgrgric.v | |- V = ( Vtx ` G ) |
|
| Assertion | uhgrimisgrgric | |- ( ( G e. UHGraph /\ F e. ( G GraphIso H ) /\ N C_ V ) -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uhgrimisgrgric.v | |- V = ( Vtx ` G ) |
|
| 2 | grimdmrel | |- Rel dom GraphIso |
|
| 3 | 2 | ovrcl | |- ( F e. ( G GraphIso H ) -> ( G e. _V /\ H e. _V ) ) |
| 4 | 3 | 3ad2ant2 | |- ( ( G e. UHGraph /\ F e. ( G GraphIso H ) /\ N C_ V ) -> ( G e. _V /\ H e. _V ) ) |
| 5 | eqid | |- ( Vtx ` H ) = ( Vtx ` H ) |
|
| 6 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 7 | eqid | |- ( iEdg ` H ) = ( iEdg ` H ) |
|
| 8 | 1 5 6 7 | grimprop | |- ( F e. ( G GraphIso H ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) ) |
| 9 | f1ofun | |- ( F : V -1-1-onto-> ( Vtx ` H ) -> Fun F ) |
|
| 10 | 9 | 3ad2ant1 | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> Fun F ) |
| 11 | 1 | fvexi | |- V e. _V |
| 12 | 11 | ssex | |- ( N C_ V -> N e. _V ) |
| 13 | resfunexg | |- ( ( Fun F /\ N e. _V ) -> ( F |` N ) e. _V ) |
|
| 14 | 10 12 13 | syl2an | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( F |` N ) e. _V ) |
| 15 | f1of1 | |- ( F : V -1-1-onto-> ( Vtx ` H ) -> F : V -1-1-> ( Vtx ` H ) ) |
|
| 16 | 15 | 3ad2ant1 | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> F : V -1-1-> ( Vtx ` H ) ) |
| 17 | f1ores | |- ( ( F : V -1-1-> ( Vtx ` H ) /\ N C_ V ) -> ( F |` N ) : N -1-1-onto-> ( F " N ) ) |
|
| 18 | 16 17 | sylan | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( F |` N ) : N -1-1-onto-> ( F " N ) ) |
| 19 | simpr | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( F |` N ) : N -1-1-onto-> ( F " N ) ) |
|
| 20 | vex | |- g e. _V |
|
| 21 | 20 | resex | |- ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) e. _V |
| 22 | 21 | a1i | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) e. _V ) |
| 23 | f1of1 | |- ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> g : dom ( iEdg ` G ) -1-1-> dom ( iEdg ` H ) ) |
|
| 24 | 23 | adantr | |- ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> g : dom ( iEdg ` G ) -1-1-> dom ( iEdg ` H ) ) |
| 25 | 24 | 3ad2ant2 | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> g : dom ( iEdg ` G ) -1-1-> dom ( iEdg ` H ) ) |
| 26 | 25 | ad2antrr | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> g : dom ( iEdg ` G ) -1-1-> dom ( iEdg ` H ) ) |
| 27 | ssrab2 | |- { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) |
|
| 28 | f1ores | |- ( ( g : dom ( iEdg ` G ) -1-1-> dom ( iEdg ` H ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) -> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) |
|
| 29 | 26 27 28 | sylancl | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) |
| 30 | 1 6 | uhgrf | |- ( G e. UHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
| 31 | id | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) ) |
|
| 32 | difssd | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) -> ( ~P V \ { (/) } ) C_ ~P V ) |
|
| 33 | 31 32 | fssd | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> ( ~P V \ { (/) } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) |
| 34 | 30 33 | syl | |- ( G e. UHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) |
| 35 | 34 | adantr | |- ( ( G e. UHGraph /\ H e. _V ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) |
| 36 | 35 | anim2i | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( G e. UHGraph /\ H e. _V ) ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) ) |
| 37 | 36 | 3adant2 | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) ) |
| 38 | 37 | ad2antrr | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) ) |
| 39 | simp2l | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) |
|
| 40 | 39 | anim1i | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ N C_ V ) ) |
| 41 | 40 | adantr | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ N C_ V ) ) |
| 42 | 41 | ancomd | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( N C_ V /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) ) |
| 43 | simpl2r | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
|
| 44 | 43 | adantr | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
| 45 | uhgrimisgrgriclem | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( iEdg ` G ) : dom ( iEdg ` G ) --> ~P V ) /\ ( N C_ V /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( j e. dom ( iEdg ` H ) /\ ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) <-> E. k e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` k ) C_ N /\ ( g ` k ) = j ) ) ) |
|
| 46 | 38 42 44 45 | syl3anc | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( ( j e. dom ( iEdg ` H ) /\ ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) <-> E. k e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` k ) C_ N /\ ( g ` k ) = j ) ) ) |
| 47 | fveq2 | |- ( x = k -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` G ) ` k ) ) |
|
| 48 | 47 | sseq1d | |- ( x = k -> ( ( ( iEdg ` G ) ` x ) C_ N <-> ( ( iEdg ` G ) ` k ) C_ N ) ) |
| 49 | 48 | rexrab | |- ( E. k e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( g ` k ) = j <-> E. k e. dom ( iEdg ` G ) ( ( ( iEdg ` G ) ` k ) C_ N /\ ( g ` k ) = j ) ) |
| 50 | 46 49 | bitr4di | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( ( j e. dom ( iEdg ` H ) /\ ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) <-> E. k e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( g ` k ) = j ) ) |
| 51 | fveq2 | |- ( x = j -> ( ( iEdg ` H ) ` x ) = ( ( iEdg ` H ) ` j ) ) |
|
| 52 | 51 | sseq1d | |- ( x = j -> ( ( ( iEdg ` H ) ` x ) C_ ( F " N ) <-> ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) ) |
| 53 | 52 | elrab | |- ( j e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } <-> ( j e. dom ( iEdg ` H ) /\ ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) ) |
| 54 | 53 | a1i | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( j e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } <-> ( j e. dom ( iEdg ` H ) /\ ( ( iEdg ` H ) ` j ) C_ ( F " N ) ) ) ) |
| 55 | f1ofn | |- ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> g Fn dom ( iEdg ` G ) ) |
|
| 56 | 55 27 | jctir | |- ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) -> ( g Fn dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) ) |
| 57 | 56 | adantr | |- ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( g Fn dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) ) |
| 58 | 57 | 3ad2ant2 | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> ( g Fn dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) ) |
| 59 | 58 | ad2antrr | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( g Fn dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) ) |
| 60 | fvelimab | |- ( ( g Fn dom ( iEdg ` G ) /\ { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) ) -> ( j e. ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) <-> E. k e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( g ` k ) = j ) ) |
|
| 61 | 59 60 | syl | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( j e. ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) <-> E. k e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( g ` k ) = j ) ) |
| 62 | 50 54 61 | 3bitr4d | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( j e. { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } <-> j e. ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) ) |
| 63 | 62 | eqrdv | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } = ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) |
| 64 | 63 | f1oeq3d | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } <-> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> ( g " { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ) ) |
| 65 | 29 64 | mpbird | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } ) |
| 66 | ssralv | |- ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } C_ dom ( iEdg ` G ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) |
|
| 67 | 27 66 | ax-mp | |- ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
| 68 | elex | |- ( G e. UHGraph -> G e. _V ) |
|
| 69 | 68 | anim1i | |- ( ( G e. UHGraph /\ H e. _V ) -> ( G e. _V /\ H e. _V ) ) |
| 70 | 69 | 3anim3i | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) -> ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) ) |
| 71 | 70 | anim1i | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) ) |
| 72 | simpr | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
|
| 73 | fvres | |- ( i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -> ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) = ( g ` i ) ) |
|
| 74 | 73 | ad2antlr | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) = ( g ` i ) ) |
| 75 | 74 | fveq2d | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) = ( ( iEdg ` H ) ` ( g ` i ) ) ) |
| 76 | fveq2 | |- ( x = i -> ( ( iEdg ` G ) ` x ) = ( ( iEdg ` G ) ` i ) ) |
|
| 77 | 76 | sseq1d | |- ( x = i -> ( ( ( iEdg ` G ) ` x ) C_ N <-> ( ( iEdg ` G ) ` i ) C_ N ) ) |
| 78 | 77 | elrab | |- ( i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } <-> ( i e. dom ( iEdg ` G ) /\ ( ( iEdg ` G ) ` i ) C_ N ) ) |
| 79 | 78 | simprbi | |- ( i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -> ( ( iEdg ` G ) ` i ) C_ N ) |
| 80 | 79 | ad2antlr | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( iEdg ` G ) ` i ) C_ N ) |
| 81 | resima2 | |- ( ( ( iEdg ` G ) ` i ) C_ N -> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
|
| 82 | 80 81 | syl | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) |
| 83 | 72 75 82 | 3eqtr4rd | |- ( ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) /\ ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) |
| 84 | 83 | ex | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. _V /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 85 | 71 84 | sylanl1 | |- ( ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) /\ i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 86 | 85 | ralimdva | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 87 | 67 86 | syl5 | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) ) -> ( A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 88 | 87 | expimpd | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 89 | 88 | 3exp1 | |- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( ( F |` N ) : N -1-1-onto-> ( F " N ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) ) ) ) |
| 90 | 89 | com25 | |- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( ( F |` N ) : N -1-1-onto-> ( F " N ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) ) ) ) |
| 91 | 90 | 3imp1 | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( ( F |` N ) : N -1-1-onto-> ( F " N ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 92 | 91 | imp | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) |
| 93 | 65 92 | jca | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 94 | f1oeq1 | |- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } <-> ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } ) ) |
|
| 95 | fveq1 | |- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( h ` i ) = ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) |
|
| 96 | 95 | fveq2d | |- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( ( iEdg ` H ) ` ( h ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) |
| 97 | 96 | eqeq2d | |- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 98 | 97 | ralbidv | |- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) |
| 99 | 94 98 | anbi12d | |- ( h = ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) -> ( ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) <-> ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( ( g |` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ) ` i ) ) ) ) ) |
| 100 | 22 93 99 | spcedv | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) |
| 101 | 19 100 | jca | |- ( ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) /\ ( F |` N ) : N -1-1-onto-> ( F " N ) ) -> ( ( F |` N ) : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
| 102 | 18 101 | mpdan | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( ( F |` N ) : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
| 103 | f1oeq1 | |- ( f = ( F |` N ) -> ( f : N -1-1-onto-> ( F " N ) <-> ( F |` N ) : N -1-1-onto-> ( F " N ) ) ) |
|
| 104 | imaeq1 | |- ( f = ( F |` N ) -> ( f " ( ( iEdg ` G ) ` i ) ) = ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) ) |
|
| 105 | 104 | eqeq1d | |- ( f = ( F |` N ) -> ( ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) |
| 106 | 105 | ralbidv | |- ( f = ( F |` N ) -> ( A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) <-> A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) |
| 107 | 106 | anbi2d | |- ( f = ( F |` N ) -> ( ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) <-> ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
| 108 | 107 | exbidv | |- ( f = ( F |` N ) -> ( E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) <-> E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
| 109 | 103 108 | anbi12d | |- ( f = ( F |` N ) -> ( ( f : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) <-> ( ( F |` N ) : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( ( F |` N ) " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) ) |
| 110 | 14 102 109 | spcedv | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> E. f ( f : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) |
| 111 | simpl3 | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( G e. UHGraph /\ H e. _V ) ) |
|
| 112 | simpr | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> N C_ V ) |
|
| 113 | f1of | |- ( F : V -1-1-onto-> ( Vtx ` H ) -> F : V --> ( Vtx ` H ) ) |
|
| 114 | 113 | fimassd | |- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( F " N ) C_ ( Vtx ` H ) ) |
| 115 | 114 | a1d | |- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( N C_ V -> ( F " N ) C_ ( Vtx ` H ) ) ) |
| 116 | 115 | 3ad2ant1 | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) -> ( N C_ V -> ( F " N ) C_ ( Vtx ` H ) ) ) |
| 117 | 116 | imp | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( F " N ) C_ ( Vtx ` H ) ) |
| 118 | eqid | |- { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } |
|
| 119 | eqid | |- { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } = { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } |
|
| 120 | 1 5 6 7 118 119 | isubgrgrim | |- ( ( ( G e. UHGraph /\ H e. _V ) /\ ( N C_ V /\ ( F " N ) C_ ( Vtx ` H ) ) ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) <-> E. f ( f : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) ) |
| 121 | 111 112 117 120 | syl12anc | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) <-> E. f ( f : N -1-1-onto-> ( F " N ) /\ E. h ( h : { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } -1-1-onto-> { x e. dom ( iEdg ` H ) | ( ( iEdg ` H ) ` x ) C_ ( F " N ) } /\ A. i e. { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) C_ N } ( f " ( ( iEdg ` G ) ` i ) ) = ( ( iEdg ` H ) ` ( h ` i ) ) ) ) ) ) |
| 122 | 110 121 | mpbird | |- ( ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) /\ ( G e. UHGraph /\ H e. _V ) ) /\ N C_ V ) -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) |
| 123 | 122 | 3exp1 | |- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) ) |
| 124 | 123 | exlimdv | |- ( F : V -1-1-onto-> ( Vtx ` H ) -> ( E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) ) |
| 125 | 124 | imp | |- ( ( F : V -1-1-onto-> ( Vtx ` H ) /\ E. g ( g : dom ( iEdg ` G ) -1-1-onto-> dom ( iEdg ` H ) /\ A. i e. dom ( iEdg ` G ) ( ( iEdg ` H ) ` ( g ` i ) ) = ( F " ( ( iEdg ` G ) ` i ) ) ) ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) |
| 126 | 8 125 | syl | |- ( F e. ( G GraphIso H ) -> ( ( G e. UHGraph /\ H e. _V ) -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) |
| 127 | 126 | expd | |- ( F e. ( G GraphIso H ) -> ( G e. UHGraph -> ( H e. _V -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) ) |
| 128 | 127 | com12 | |- ( G e. UHGraph -> ( F e. ( G GraphIso H ) -> ( H e. _V -> ( N C_ V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) ) |
| 129 | 128 | com34 | |- ( G e. UHGraph -> ( F e. ( G GraphIso H ) -> ( N C_ V -> ( H e. _V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) ) ) |
| 130 | 129 | 3imp | |- ( ( G e. UHGraph /\ F e. ( G GraphIso H ) /\ N C_ V ) -> ( H e. _V -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) |
| 131 | 130 | adantld | |- ( ( G e. UHGraph /\ F e. ( G GraphIso H ) /\ N C_ V ) -> ( ( G e. _V /\ H e. _V ) -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) ) |
| 132 | 4 131 | mpd | |- ( ( G e. UHGraph /\ F e. ( G GraphIso H ) /\ N C_ V ) -> ( G ISubGr N ) ~=gr ( H ISubGr ( F " N ) ) ) |