This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphic subgraphs induced by closed neighborhoods of vertices of two graphs. (Contributed by AV, 29-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbgrisubgrgrim.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| clnbgrisubgrgrim.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| clnbgrisubgrgrim.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑋 ) | ||
| clnbgrisubgrgrim.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx 𝑌 ) | ||
| clnbgrisubgrgrim.k | ⊢ 𝐾 = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } | ||
| clnbgrisubgrgrim.l | ⊢ 𝐿 = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } | ||
| Assertion | clnbgrisubgrgrim | ⊢ ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr 𝑀 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbgrisubgrgrim.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | clnbgrisubgrgrim.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 3 | clnbgrisubgrgrim.n | ⊢ 𝑁 = ( 𝐺 ClNeighbVtx 𝑋 ) | |
| 4 | clnbgrisubgrgrim.m | ⊢ 𝑀 = ( 𝐻 ClNeighbVtx 𝑌 ) | |
| 5 | clnbgrisubgrgrim.k | ⊢ 𝐾 = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } | |
| 6 | clnbgrisubgrgrim.l | ⊢ 𝐿 = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } | |
| 7 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 8 | 7 | clnbgrssvtx | ⊢ ( 𝐺 ClNeighbVtx 𝑋 ) ⊆ ( Vtx ‘ 𝐺 ) |
| 9 | 3 8 | eqsstri | ⊢ 𝑁 ⊆ ( Vtx ‘ 𝐺 ) |
| 10 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 11 | 10 | clnbgrssvtx | ⊢ ( 𝐻 ClNeighbVtx 𝑌 ) ⊆ ( Vtx ‘ 𝐻 ) |
| 12 | 4 11 | eqsstri | ⊢ 𝑀 ⊆ ( Vtx ‘ 𝐻 ) |
| 13 | 7 10 1 2 5 6 | isubgrgrim | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ ( Vtx ‘ 𝐺 ) ∧ 𝑀 ⊆ ( Vtx ‘ 𝐻 ) ) ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr 𝑀 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 14 | 9 12 13 | mpanr12 | ⊢ ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr 𝑀 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |