This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphic subgraphs induced by subsets of vertices of two graphs. (Contributed by AV, 29-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isubgrgrim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| isubgrgrim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | ||
| isubgrgrim.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| isubgrgrim.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | ||
| isubgrgrim.k | ⊢ 𝐾 = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } | ||
| isubgrgrim.l | ⊢ 𝐿 = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } | ||
| Assertion | isubgrgrim | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr 𝑀 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isubgrgrim.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | isubgrgrim.w | ⊢ 𝑊 = ( Vtx ‘ 𝐻 ) | |
| 3 | isubgrgrim.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 4 | isubgrgrim.j | ⊢ 𝐽 = ( iEdg ‘ 𝐻 ) | |
| 5 | isubgrgrim.k | ⊢ 𝐾 = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } | |
| 6 | isubgrgrim.l | ⊢ 𝐿 = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } | |
| 7 | ovex | ⊢ ( 𝐺 ISubGr 𝑁 ) ∈ V | |
| 8 | ovex | ⊢ ( 𝐻 ISubGr 𝑀 ) ∈ V | |
| 9 | 7 8 | pm3.2i | ⊢ ( ( 𝐺 ISubGr 𝑁 ) ∈ V ∧ ( 𝐻 ISubGr 𝑀 ) ∈ V ) |
| 10 | eqid | ⊢ ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) = ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) | |
| 11 | eqid | ⊢ ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) = ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) | |
| 12 | eqid | ⊢ ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) = ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) | |
| 13 | eqid | ⊢ ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) = ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) | |
| 14 | 10 11 12 13 | dfgric2 | ⊢ ( ( ( 𝐺 ISubGr 𝑁 ) ∈ V ∧ ( 𝐻 ISubGr 𝑀 ) ∈ V ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr 𝑀 ) ↔ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 15 | 9 14 | mp1i | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr 𝑀 ) ↔ ∃ 𝑓 ( 𝑓 : ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 16 | eqidd | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → 𝑓 = 𝑓 ) | |
| 17 | 1 | isubgrvtx | ⊢ ( ( 𝐺 ∈ 𝑈 ∧ 𝑁 ⊆ 𝑉 ) → ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) = 𝑁 ) |
| 18 | 17 | ad2ant2r | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) = 𝑁 ) |
| 19 | 2 | isubgrvtx | ⊢ ( ( 𝐻 ∈ 𝑇 ∧ 𝑀 ⊆ 𝑊 ) → ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) = 𝑀 ) |
| 20 | 19 | ad2ant2l | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) = 𝑀 ) |
| 21 | 16 18 20 | f1oeq123d | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( 𝑓 : ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) ↔ 𝑓 : 𝑁 –1-1-onto→ 𝑀 ) ) |
| 22 | eqidd | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → 𝑔 = 𝑔 ) | |
| 23 | 1 3 | isubgriedg | ⊢ ( ( 𝐺 ∈ 𝑈 ∧ 𝑁 ⊆ 𝑉 ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) = ( 𝐼 ↾ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) ) |
| 24 | 23 | ad2ant2r | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) = ( 𝐼 ↾ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) ) |
| 25 | 24 | dmeqd | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) = dom ( 𝐼 ↾ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) ) |
| 26 | ssrab2 | ⊢ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom 𝐼 | |
| 27 | 26 | a1i | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom 𝐼 ) |
| 28 | ssdmres | ⊢ ( { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ⊆ dom 𝐼 ↔ dom ( 𝐼 ↾ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) | |
| 29 | 27 28 | sylib | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → dom ( 𝐼 ↾ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) = { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) |
| 30 | 5 | eqcomi | ⊢ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } = 𝐾 |
| 31 | 30 | a1i | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } = 𝐾 ) |
| 32 | 25 29 31 | 3eqtrd | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) = 𝐾 ) |
| 33 | 2 4 | isubgriedg | ⊢ ( ( 𝐻 ∈ 𝑇 ∧ 𝑀 ⊆ 𝑊 ) → ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) = ( 𝐽 ↾ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) ) |
| 34 | 33 | ad2ant2l | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) = ( 𝐽 ↾ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) ) |
| 35 | 34 | dmeqd | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) = dom ( 𝐽 ↾ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) ) |
| 36 | ssrab2 | ⊢ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom 𝐽 | |
| 37 | 36 | a1i | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom 𝐽 ) |
| 38 | ssdmres | ⊢ ( { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ⊆ dom 𝐽 ↔ dom ( 𝐽 ↾ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) | |
| 39 | 37 38 | sylib | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → dom ( 𝐽 ↾ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) = { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) |
| 40 | 6 | eqcomi | ⊢ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } = 𝐿 |
| 41 | 40 | a1i | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } = 𝐿 ) |
| 42 | 35 39 41 | 3eqtrd | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) = 𝐿 ) |
| 43 | 22 32 42 | f1oeq123d | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( 𝑔 : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ↔ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ) |
| 44 | 43 | anbi1d | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( 𝑔 : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 45 | 31 | reseq2d | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( 𝐼 ↾ { 𝑥 ∈ dom 𝐼 ∣ ( 𝐼 ‘ 𝑥 ) ⊆ 𝑁 } ) = ( 𝐼 ↾ 𝐾 ) ) |
| 46 | 24 45 | eqtrd | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) = ( 𝐼 ↾ 𝐾 ) ) |
| 47 | 46 | fveq1d | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) = ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) |
| 48 | 47 | imaeq2d | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( 𝑓 “ ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) ) |
| 49 | 40 | reseq2i | ⊢ ( 𝐽 ↾ { 𝑥 ∈ dom 𝐽 ∣ ( 𝐽 ‘ 𝑥 ) ⊆ 𝑀 } ) = ( 𝐽 ↾ 𝐿 ) |
| 50 | 34 49 | eqtrdi | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) = ( 𝐽 ↾ 𝐿 ) ) |
| 51 | 50 | fveq1d | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( ( 𝐽 ↾ 𝐿 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
| 52 | 48 51 | eqeq12d | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ( 𝑓 “ ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) = ( ( 𝐽 ↾ 𝐿 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 53 | 32 52 | raleqbidv | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) = ( ( 𝐽 ↾ 𝐿 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 54 | 53 | adantr | ⊢ ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) = ( ( 𝐽 ↾ 𝐿 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 55 | fvres | ⊢ ( 𝑖 ∈ 𝐾 → ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) = ( 𝐼 ‘ 𝑖 ) ) | |
| 56 | 55 | adantl | ⊢ ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑖 ∈ 𝐾 ) → ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) = ( 𝐼 ‘ 𝑖 ) ) |
| 57 | 56 | imaeq2d | ⊢ ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑖 ∈ 𝐾 ) → ( 𝑓 “ ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) ) |
| 58 | 57 | adantlr | ⊢ ( ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ∧ 𝑖 ∈ 𝐾 ) → ( 𝑓 “ ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) = ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) ) |
| 59 | f1of | ⊢ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 → 𝑔 : 𝐾 ⟶ 𝐿 ) | |
| 60 | 59 | adantl | ⊢ ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) → 𝑔 : 𝐾 ⟶ 𝐿 ) |
| 61 | 60 | ffvelcdmda | ⊢ ( ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ∧ 𝑖 ∈ 𝐾 ) → ( 𝑔 ‘ 𝑖 ) ∈ 𝐿 ) |
| 62 | 61 | fvresd | ⊢ ( ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ∧ 𝑖 ∈ 𝐾 ) → ( ( 𝐽 ↾ 𝐿 ) ‘ ( 𝑔 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) |
| 63 | 58 62 | eqeq12d | ⊢ ( ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) ∧ 𝑖 ∈ 𝐾 ) → ( ( 𝑓 “ ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) = ( ( 𝐽 ↾ 𝐿 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 64 | 63 | ralbidva | ⊢ ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) → ( ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( ( 𝐼 ↾ 𝐾 ) ‘ 𝑖 ) ) = ( ( 𝐽 ↾ 𝐿 ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 65 | 54 64 | bitrd | ⊢ ( ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) ∧ 𝑔 : 𝐾 –1-1-onto→ 𝐿 ) → ( ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) |
| 66 | 65 | pm5.32da | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 67 | 44 66 | bitrd | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( 𝑔 : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 68 | 67 | exbidv | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ↔ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) |
| 69 | 21 68 | anbi12d | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( 𝑓 : ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ↔ ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 70 | 69 | exbidv | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ∃ 𝑓 ( 𝑓 : ( Vtx ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ ( Vtx ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∃ 𝑔 ( 𝑔 : dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) –1-1-onto→ dom ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ∧ ∀ 𝑖 ∈ dom ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ( 𝑓 “ ( ( iEdg ‘ ( 𝐺 ISubGr 𝑁 ) ) ‘ 𝑖 ) ) = ( ( iEdg ‘ ( 𝐻 ISubGr 𝑀 ) ) ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |
| 71 | 15 70 | bitrd | ⊢ ( ( ( 𝐺 ∈ 𝑈 ∧ 𝐻 ∈ 𝑇 ) ∧ ( 𝑁 ⊆ 𝑉 ∧ 𝑀 ⊆ 𝑊 ) ) → ( ( 𝐺 ISubGr 𝑁 ) ≃𝑔𝑟 ( 𝐻 ISubGr 𝑀 ) ↔ ∃ 𝑓 ( 𝑓 : 𝑁 –1-1-onto→ 𝑀 ∧ ∃ 𝑔 ( 𝑔 : 𝐾 –1-1-onto→ 𝐿 ∧ ∀ 𝑖 ∈ 𝐾 ( 𝑓 “ ( 𝐼 ‘ 𝑖 ) ) = ( 𝐽 ‘ ( 𝑔 ‘ 𝑖 ) ) ) ) ) ) |