This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two sequences converge iff the sequence of their ordered pairs converges. Proposition 14-2.6 of Gleason p. 230. (Contributed by NM, 16-Jul-2007) (Revised by Mario Carneiro, 5-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txlm.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| txlm.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| txlm.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| txlm.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| txlm.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) | ||
| txlm.g | ⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ 𝑌 ) | ||
| txlm.h | ⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) | ||
| Assertion | txlm | ⊢ ( 𝜑 → ( ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑅 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐾 ) 𝑆 ) ↔ 𝐻 ( ⇝𝑡 ‘ ( 𝐽 ×t 𝐾 ) ) 〈 𝑅 , 𝑆 〉 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txlm.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | txlm.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | txlm.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 4 | txlm.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 5 | txlm.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) | |
| 6 | txlm.g | ⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ 𝑌 ) | |
| 7 | txlm.h | ⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) | |
| 8 | r19.27v | ⊢ ( ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∀ 𝑢 ∈ 𝐽 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) | |
| 9 | r19.28v | ⊢ ( ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) | |
| 10 | 9 | ralimi | ⊢ ( ∀ 𝑢 ∈ 𝐽 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 11 | 8 10 | syl | ⊢ ( ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 12 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) ) → 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) | |
| 13 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 14 | 3 13 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 15 | topontop | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) | |
| 16 | 4 15 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 17 | eqid | ⊢ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) = ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) | |
| 18 | 17 | txval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) → ( 𝐽 ×t 𝐾 ) = ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ) |
| 19 | 14 16 18 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) = ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) ) → ( 𝐽 ×t 𝐾 ) = ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ) |
| 21 | 12 20 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) ) → 𝑤 ∈ ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ) |
| 22 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) ) → 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) | |
| 23 | tg2 | ⊢ ( ( 𝑤 ∈ ( topGen ‘ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) → ∃ 𝑡 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑤 ) ) | |
| 24 | 21 22 23 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) ) → ∃ 𝑡 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑤 ) ) |
| 25 | vex | ⊢ 𝑢 ∈ V | |
| 26 | vex | ⊢ 𝑣 ∈ V | |
| 27 | 25 26 | xpex | ⊢ ( 𝑢 × 𝑣 ) ∈ V |
| 28 | 27 | rgen2w | ⊢ ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 𝑢 × 𝑣 ) ∈ V |
| 29 | eqid | ⊢ ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) = ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) | |
| 30 | eleq2 | ⊢ ( 𝑡 = ( 𝑢 × 𝑣 ) → ( 〈 𝑅 , 𝑆 〉 ∈ 𝑡 ↔ 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ) ) | |
| 31 | sseq1 | ⊢ ( 𝑡 = ( 𝑢 × 𝑣 ) → ( 𝑡 ⊆ 𝑤 ↔ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) | |
| 32 | 30 31 | anbi12d | ⊢ ( 𝑡 = ( 𝑢 × 𝑣 ) → ( ( 〈 𝑅 , 𝑆 〉 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑤 ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) |
| 33 | 29 32 | rexrnmpo | ⊢ ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( 𝑢 × 𝑣 ) ∈ V → ( ∃ 𝑡 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑤 ) ↔ ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) |
| 34 | 28 33 | ax-mp | ⊢ ( ∃ 𝑡 ∈ ran ( 𝑢 ∈ 𝐽 , 𝑣 ∈ 𝐾 ↦ ( 𝑢 × 𝑣 ) ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑡 ∧ 𝑡 ⊆ 𝑤 ) ↔ ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) |
| 35 | 24 34 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) |
| 36 | 35 | ex | ⊢ ( 𝜑 → ( ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) |
| 37 | r19.29 | ⊢ ( ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ∃ 𝑢 ∈ 𝐽 ( ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) | |
| 38 | r19.29 | ⊢ ( ( ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ∃ 𝑣 ∈ 𝐾 ( ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) | |
| 39 | simprl | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ) | |
| 40 | opelxp | ⊢ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ( 𝑅 ∈ 𝑢 ∧ 𝑆 ∈ 𝑣 ) ) | |
| 41 | 39 40 | sylib | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ( 𝑅 ∈ 𝑢 ∧ 𝑆 ∈ 𝑣 ) ) |
| 42 | pm2.27 | ⊢ ( 𝑅 ∈ 𝑢 → ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) | |
| 43 | pm2.27 | ⊢ ( 𝑆 ∈ 𝑣 → ( ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) | |
| 44 | 42 43 | im2anan9 | ⊢ ( ( 𝑅 ∈ 𝑢 ∧ 𝑆 ∈ 𝑣 ) → ( ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 45 | 41 44 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ( ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 46 | 1 | rexanuz2 | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ↔ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) |
| 47 | 1 | uztrn2 | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ 𝑍 ) |
| 48 | opelxpi | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ∈ ( 𝑢 × 𝑣 ) ) | |
| 49 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 50 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 51 | 49 50 | opeq12d | ⊢ ( 𝑛 = 𝑘 → 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 = 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ) |
| 52 | opex | ⊢ 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ∈ V | |
| 53 | 51 7 52 | fvmpt | ⊢ ( 𝑘 ∈ 𝑍 → ( 𝐻 ‘ 𝑘 ) = 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ) |
| 54 | 53 | eleq1d | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑣 ) ↔ 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ∈ ( 𝑢 × 𝑣 ) ) ) |
| 55 | 48 54 | imbitrrid | ⊢ ( 𝑘 ∈ 𝑍 → ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑣 ) ) ) |
| 56 | 55 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑣 ) ) ) |
| 57 | simplrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) | |
| 58 | 57 | sseld | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑣 ) → ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
| 59 | 56 58 | syld | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ∧ 𝑘 ∈ 𝑍 ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
| 60 | 47 59 | sylan2 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ∧ ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
| 61 | 60 | anassrs | ⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ∧ 𝑗 ∈ 𝑍 ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
| 62 | 61 | ralimdva | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ∧ 𝑗 ∈ 𝑍 ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
| 63 | 62 | reximdva | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
| 64 | 46 63 | biimtrrid | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ( ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ∧ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
| 65 | 45 64 | syld | ⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ( ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
| 66 | 65 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) → ( ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ( ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
| 67 | 66 | impcomd | ⊢ ( ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) ∧ 𝑣 ∈ 𝐾 ) → ( ( ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
| 68 | 67 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ∃ 𝑣 ∈ 𝐾 ( ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
| 69 | 38 68 | syl5 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝐽 ) → ( ( ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
| 70 | 69 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑢 ∈ 𝐽 ( ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
| 71 | 37 70 | syl5 | ⊢ ( 𝜑 → ( ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ∧ ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) |
| 72 | 71 | expcomd | ⊢ ( 𝜑 → ( ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
| 73 | 36 72 | syld | ⊢ ( 𝜑 → ( ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ∧ 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ) → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
| 74 | 73 | expdimp | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
| 75 | 74 | com23 | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
| 76 | 75 | ralrimdva | ⊢ ( 𝜑 → ( ∀ 𝑢 ∈ 𝐽 ∀ 𝑣 ∈ 𝐾 ( ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
| 77 | 11 76 | syl5 | ⊢ ( 𝜑 → ( ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
| 78 | 77 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) → ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
| 79 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → 𝐽 ∈ Top ) |
| 80 | 16 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → 𝐾 ∈ Top ) |
| 81 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → 𝑢 ∈ 𝐽 ) | |
| 82 | toponmax | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 ∈ 𝐾 ) | |
| 83 | 4 82 | syl | ⊢ ( 𝜑 → 𝑌 ∈ 𝐾 ) |
| 84 | 83 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → 𝑌 ∈ 𝐾 ) |
| 85 | txopn | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝑢 ∈ 𝐽 ∧ 𝑌 ∈ 𝐾 ) ) → ( 𝑢 × 𝑌 ) ∈ ( 𝐽 ×t 𝐾 ) ) | |
| 86 | 79 80 81 84 85 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → ( 𝑢 × 𝑌 ) ∈ ( 𝐽 ×t 𝐾 ) ) |
| 87 | eleq2 | ⊢ ( 𝑤 = ( 𝑢 × 𝑌 ) → ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ↔ 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑌 ) ) ) | |
| 88 | eleq2 | ⊢ ( 𝑤 = ( 𝑢 × 𝑌 ) → ( ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ↔ ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) ) ) | |
| 89 | 88 | rexralbidv | ⊢ ( 𝑤 = ( 𝑢 × 𝑌 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) ) ) |
| 90 | 87 89 | imbi12d | ⊢ ( 𝑤 = ( 𝑢 × 𝑌 ) → ( ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) ) ) ) |
| 91 | 90 | rspcv | ⊢ ( ( 𝑢 × 𝑌 ) ∈ ( 𝐽 ×t 𝐾 ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) ) ) ) |
| 92 | 86 91 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) ) ) ) |
| 93 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → 𝑆 ∈ 𝑌 ) | |
| 94 | opelxpi | ⊢ ( ( 𝑅 ∈ 𝑢 ∧ 𝑆 ∈ 𝑌 ) → 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑌 ) ) | |
| 95 | 93 94 | sylan2 | ⊢ ( ( 𝑅 ∈ 𝑢 ∧ ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) ) → 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑌 ) ) |
| 96 | 95 | expcom | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → ( 𝑅 ∈ 𝑢 → 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑌 ) ) ) |
| 97 | 53 | eleq1d | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) ↔ 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ∈ ( 𝑢 × 𝑌 ) ) ) |
| 98 | opelxp1 | ⊢ ( 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ∈ ( 𝑢 × 𝑌 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) | |
| 99 | 97 98 | biimtrdi | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 100 | 47 99 | syl | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 101 | 100 | ralimdva | ⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 102 | 101 | reximia | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) |
| 103 | 102 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) |
| 104 | 96 103 | imim12d | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → ( ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑢 × 𝑌 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑢 × 𝑌 ) ) → ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 105 | 92 104 | syld | ⊢ ( ( 𝜑 ∧ ( 𝑆 ∈ 𝑌 ∧ 𝑢 ∈ 𝐽 ) ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 106 | 105 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑆 ∈ 𝑌 ) ∧ 𝑢 ∈ 𝐽 ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 107 | 106 | ralrimdva | ⊢ ( ( 𝜑 ∧ 𝑆 ∈ 𝑌 ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 108 | 107 | adantrl | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) |
| 109 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → 𝐽 ∈ Top ) |
| 110 | 16 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → 𝐾 ∈ Top ) |
| 111 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 112 | 3 111 | syl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
| 113 | 112 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → 𝑋 ∈ 𝐽 ) |
| 114 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → 𝑣 ∈ 𝐾 ) | |
| 115 | txopn | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝑋 ∈ 𝐽 ∧ 𝑣 ∈ 𝐾 ) ) → ( 𝑋 × 𝑣 ) ∈ ( 𝐽 ×t 𝐾 ) ) | |
| 116 | 109 110 113 114 115 | syl22anc | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → ( 𝑋 × 𝑣 ) ∈ ( 𝐽 ×t 𝐾 ) ) |
| 117 | eleq2 | ⊢ ( 𝑤 = ( 𝑋 × 𝑣 ) → ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 ↔ 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑣 ) ) ) | |
| 118 | eleq2 | ⊢ ( 𝑤 = ( 𝑋 × 𝑣 ) → ( ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ↔ ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) ) ) | |
| 119 | 118 | rexralbidv | ⊢ ( 𝑤 = ( 𝑋 × 𝑣 ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ↔ ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) ) ) |
| 120 | 117 119 | imbi12d | ⊢ ( 𝑤 = ( 𝑋 × 𝑣 ) → ( ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) ) ) ) |
| 121 | 120 | rspcv | ⊢ ( ( 𝑋 × 𝑣 ) ∈ ( 𝐽 ×t 𝐾 ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) ) ) ) |
| 122 | 116 121 | syl | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) ) ) ) |
| 123 | opelxpi | ⊢ ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑣 ) → 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑣 ) ) | |
| 124 | 123 | ex | ⊢ ( 𝑅 ∈ 𝑋 → ( 𝑆 ∈ 𝑣 → 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑣 ) ) ) |
| 125 | 124 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → ( 𝑆 ∈ 𝑣 → 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑣 ) ) ) |
| 126 | 53 | eleq1d | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) ↔ 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ∈ ( 𝑋 × 𝑣 ) ) ) |
| 127 | opelxp2 | ⊢ ( 〈 ( 𝐹 ‘ 𝑘 ) , ( 𝐺 ‘ 𝑘 ) 〉 ∈ ( 𝑋 × 𝑣 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) | |
| 128 | 126 127 | biimtrdi | ⊢ ( 𝑘 ∈ 𝑍 → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) |
| 129 | 47 128 | syl | ⊢ ( ( 𝑗 ∈ 𝑍 ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) |
| 130 | 129 | ralimdva | ⊢ ( 𝑗 ∈ 𝑍 → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) |
| 131 | 130 | reximia | ⊢ ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) |
| 132 | 131 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → ( ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) |
| 133 | 125 132 | imim12d | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → ( ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑣 ) → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ ( 𝑋 × 𝑣 ) ) → ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 134 | 122 133 | syld | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑣 ∈ 𝐾 ) ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 135 | 134 | anassrs | ⊢ ( ( ( 𝜑 ∧ 𝑅 ∈ 𝑋 ) ∧ 𝑣 ∈ 𝐾 ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 136 | 135 | ralrimdva | ⊢ ( ( 𝜑 ∧ 𝑅 ∈ 𝑋 ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 137 | 136 | adantrr | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) |
| 138 | 108 137 | jcad | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) → ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) |
| 139 | 78 138 | impbid | ⊢ ( ( 𝜑 ∧ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) → ( ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ↔ ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
| 140 | 139 | pm5.32da | ⊢ ( 𝜑 → ( ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ) |
| 141 | opelxp | ⊢ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ↔ ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ) | |
| 142 | 141 | anbi1i | ⊢ ( ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) |
| 143 | 140 142 | bitr4di | ⊢ ( 𝜑 → ( ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ) |
| 144 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) | |
| 145 | 3 1 2 5 144 | lmbrf | ⊢ ( 𝜑 → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑅 ↔ ( 𝑅 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ) ) |
| 146 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 147 | 4 1 2 6 146 | lmbrf | ⊢ ( 𝜑 → ( 𝐺 ( ⇝𝑡 ‘ 𝐾 ) 𝑆 ↔ ( 𝑆 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) |
| 148 | 145 147 | anbi12d | ⊢ ( 𝜑 → ( ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑅 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐾 ) 𝑆 ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ∧ ( 𝑆 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) ) |
| 149 | an4 | ⊢ ( ( ( 𝑅 ∈ 𝑋 ∧ ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ) ∧ ( 𝑆 ∈ 𝑌 ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) | |
| 150 | 148 149 | bitrdi | ⊢ ( 𝜑 → ( ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑅 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐾 ) 𝑆 ) ↔ ( ( 𝑅 ∈ 𝑋 ∧ 𝑆 ∈ 𝑌 ) ∧ ( ∀ 𝑢 ∈ 𝐽 ( 𝑅 ∈ 𝑢 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑢 ) ∧ ∀ 𝑣 ∈ 𝐾 ( 𝑆 ∈ 𝑣 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐺 ‘ 𝑘 ) ∈ 𝑣 ) ) ) ) ) |
| 151 | txtopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
| 152 | 3 4 151 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 153 | 5 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
| 154 | 6 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) ∈ 𝑌 ) |
| 155 | 153 154 | opelxpd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 156 | 155 7 | fmptd | ⊢ ( 𝜑 → 𝐻 : 𝑍 ⟶ ( 𝑋 × 𝑌 ) ) |
| 157 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐻 ‘ 𝑘 ) = ( 𝐻 ‘ 𝑘 ) ) | |
| 158 | 152 1 2 156 157 | lmbrf | ⊢ ( 𝜑 → ( 𝐻 ( ⇝𝑡 ‘ ( 𝐽 ×t 𝐾 ) ) 〈 𝑅 , 𝑆 〉 ↔ ( 〈 𝑅 , 𝑆 〉 ∈ ( 𝑋 × 𝑌 ) ∧ ∀ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝑅 , 𝑆 〉 ∈ 𝑤 → ∃ 𝑗 ∈ 𝑍 ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐻 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ) |
| 159 | 143 150 158 | 3bitr4d | ⊢ ( 𝜑 → ( ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑅 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐾 ) 𝑆 ) ↔ 𝐻 ( ⇝𝑡 ‘ ( 𝐽 ×t 𝐾 ) ) 〈 𝑅 , 𝑆 〉 ) ) |