This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngop.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| ralrnmpo.2 | ⊢ ( 𝑧 = 𝐶 → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | rexrnmpo | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ( ∃ 𝑧 ∈ ran 𝐹 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 , 𝑦 ∈ 𝐵 ↦ 𝐶 ) | |
| 2 | ralrnmpo.2 | ⊢ ( 𝑧 = 𝐶 → ( 𝜑 ↔ 𝜓 ) ) | |
| 3 | 2 | notbid | ⊢ ( 𝑧 = 𝐶 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
| 4 | 1 3 | ralrnmpo | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ( ∀ 𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ¬ 𝜓 ) ) |
| 5 | 4 | notbid | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ( ¬ ∀ 𝑧 ∈ ran 𝐹 ¬ 𝜑 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ¬ 𝜓 ) ) |
| 6 | dfrex2 | ⊢ ( ∃ 𝑧 ∈ ran 𝐹 𝜑 ↔ ¬ ∀ 𝑧 ∈ ran 𝐹 ¬ 𝜑 ) | |
| 7 | dfrex2 | ⊢ ( ∃ 𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜓 ) | |
| 8 | 7 | rexbii | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ↔ ∃ 𝑥 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜓 ) |
| 9 | rexnal | ⊢ ( ∃ 𝑥 ∈ 𝐴 ¬ ∀ 𝑦 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ¬ 𝜓 ) | |
| 10 | 8 9 | bitri | ⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 ¬ 𝜓 ) |
| 11 | 5 6 10 | 3bitr4g | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ( ∃ 𝑧 ∈ ran 𝐹 𝜑 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜓 ) ) |