This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 15-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txlm.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| txlm.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| txlm.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| txlm.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| txlm.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) | ||
| txlm.g | ⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ 𝑌 ) | ||
| lmcn2.fl | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑅 ) | ||
| lmcn2.gl | ⊢ ( 𝜑 → 𝐺 ( ⇝𝑡 ‘ 𝐾 ) 𝑆 ) | ||
| lmcn2.o | ⊢ ( 𝜑 → 𝑂 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) ) | ||
| lmcn2.h | ⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) 𝑂 ( 𝐺 ‘ 𝑛 ) ) ) | ||
| Assertion | lmcn2 | ⊢ ( 𝜑 → 𝐻 ( ⇝𝑡 ‘ 𝑁 ) ( 𝑅 𝑂 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txlm.z | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | txlm.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | txlm.j | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 4 | txlm.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 5 | txlm.f | ⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ 𝑋 ) | |
| 6 | txlm.g | ⊢ ( 𝜑 → 𝐺 : 𝑍 ⟶ 𝑌 ) | |
| 7 | lmcn2.fl | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑅 ) | |
| 8 | lmcn2.gl | ⊢ ( 𝜑 → 𝐺 ( ⇝𝑡 ‘ 𝐾 ) 𝑆 ) | |
| 9 | lmcn2.o | ⊢ ( 𝜑 → 𝑂 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) ) | |
| 10 | lmcn2.h | ⊢ 𝐻 = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) 𝑂 ( 𝐺 ‘ 𝑛 ) ) ) | |
| 11 | 5 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑋 ) |
| 12 | 6 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑛 ) ∈ 𝑌 ) |
| 13 | 11 12 | opelxpd | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ∈ ( 𝑋 × 𝑌 ) ) |
| 14 | eqidd | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) = ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) | |
| 15 | txtopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) | |
| 16 | 3 4 15 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ) |
| 17 | cntop2 | ⊢ ( 𝑂 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) → 𝑁 ∈ Top ) | |
| 18 | 9 17 | syl | ⊢ ( 𝜑 → 𝑁 ∈ Top ) |
| 19 | toptopon2 | ⊢ ( 𝑁 ∈ Top ↔ 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ) | |
| 20 | 18 19 | sylib | ⊢ ( 𝜑 → 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ) |
| 21 | cnf2 | ⊢ ( ( ( 𝐽 ×t 𝐾 ) ∈ ( TopOn ‘ ( 𝑋 × 𝑌 ) ) ∧ 𝑁 ∈ ( TopOn ‘ ∪ 𝑁 ) ∧ 𝑂 ∈ ( ( 𝐽 ×t 𝐾 ) Cn 𝑁 ) ) → 𝑂 : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑁 ) | |
| 22 | 16 20 9 21 | syl3anc | ⊢ ( 𝜑 → 𝑂 : ( 𝑋 × 𝑌 ) ⟶ ∪ 𝑁 ) |
| 23 | 22 | feqmptd | ⊢ ( 𝜑 → 𝑂 = ( 𝑥 ∈ ( 𝑋 × 𝑌 ) ↦ ( 𝑂 ‘ 𝑥 ) ) ) |
| 24 | fveq2 | ⊢ ( 𝑥 = 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 → ( 𝑂 ‘ 𝑥 ) = ( 𝑂 ‘ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) | |
| 25 | df-ov | ⊢ ( ( 𝐹 ‘ 𝑛 ) 𝑂 ( 𝐺 ‘ 𝑛 ) ) = ( 𝑂 ‘ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) | |
| 26 | 24 25 | eqtr4di | ⊢ ( 𝑥 = 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 → ( 𝑂 ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑛 ) 𝑂 ( 𝐺 ‘ 𝑛 ) ) ) |
| 27 | 13 14 23 26 | fmptco | ⊢ ( 𝜑 → ( 𝑂 ∘ ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐹 ‘ 𝑛 ) 𝑂 ( 𝐺 ‘ 𝑛 ) ) ) ) |
| 28 | 27 10 | eqtr4di | ⊢ ( 𝜑 → ( 𝑂 ∘ ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) = 𝐻 ) |
| 29 | eqid | ⊢ ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) = ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) | |
| 30 | 1 2 3 4 5 6 29 | txlm | ⊢ ( 𝜑 → ( ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑅 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐾 ) 𝑆 ) ↔ ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ( ⇝𝑡 ‘ ( 𝐽 ×t 𝐾 ) ) 〈 𝑅 , 𝑆 〉 ) ) |
| 31 | 7 8 30 | mpbi2and | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ( ⇝𝑡 ‘ ( 𝐽 ×t 𝐾 ) ) 〈 𝑅 , 𝑆 〉 ) |
| 32 | 31 9 | lmcn | ⊢ ( 𝜑 → ( 𝑂 ∘ ( 𝑛 ∈ 𝑍 ↦ 〈 ( 𝐹 ‘ 𝑛 ) , ( 𝐺 ‘ 𝑛 ) 〉 ) ) ( ⇝𝑡 ‘ 𝑁 ) ( 𝑂 ‘ 〈 𝑅 , 𝑆 〉 ) ) |
| 33 | 28 32 | eqbrtrrd | ⊢ ( 𝜑 → 𝐻 ( ⇝𝑡 ‘ 𝑁 ) ( 𝑂 ‘ 〈 𝑅 , 𝑆 〉 ) ) |
| 34 | df-ov | ⊢ ( 𝑅 𝑂 𝑆 ) = ( 𝑂 ‘ 〈 𝑅 , 𝑆 〉 ) | |
| 35 | 33 34 | breqtrrdi | ⊢ ( 𝜑 → 𝐻 ( ⇝𝑡 ‘ 𝑁 ) ( 𝑅 𝑂 𝑆 ) ) |