This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | im2an9.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| im2an9.2 | ⊢ ( 𝜃 → ( 𝜏 → 𝜂 ) ) | ||
| Assertion | im2anan9 | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( ( 𝜓 ∧ 𝜏 ) → ( 𝜒 ∧ 𝜂 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | im2an9.1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) | |
| 2 | im2an9.2 | ⊢ ( 𝜃 → ( 𝜏 → 𝜂 ) ) | |
| 3 | 1 | adantrd | ⊢ ( 𝜑 → ( ( 𝜓 ∧ 𝜏 ) → 𝜒 ) ) |
| 4 | 2 | adantld | ⊢ ( 𝜃 → ( ( 𝜓 ∧ 𝜏 ) → 𝜂 ) ) |
| 5 | 3 4 | anim12ii | ⊢ ( ( 𝜑 ∧ 𝜃 ) → ( ( 𝜓 ∧ 𝜏 ) → ( 𝜒 ∧ 𝜂 ) ) ) |