This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological product of two Hausdorff spaces is Hausdorff. (Contributed by Mario Carneiro, 23-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | txhaus | ⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ( 𝑅 ×t 𝑆 ) ∈ Haus ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | haustop | ⊢ ( 𝑅 ∈ Haus → 𝑅 ∈ Top ) | |
| 2 | haustop | ⊢ ( 𝑆 ∈ Haus → 𝑆 ∈ Top ) | |
| 3 | txtop | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 5 | eqid | ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 6 | eqid | ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 7 | 5 6 | txuni | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 8 | 1 2 7 | syl2an | ⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 9 | 8 | eleq2d | ⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ↔ 𝑥 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) |
| 10 | 8 | eleq2d | ⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ( 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ↔ 𝑦 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) |
| 11 | 9 10 | anbi12d | ⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ( ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ↔ ( 𝑥 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∧ 𝑦 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) ) ) |
| 12 | neorian | ⊢ ( ( ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ↔ ¬ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ) | |
| 13 | xpopth | ⊢ ( ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) → ( ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ↔ 𝑥 = 𝑦 ) ) | |
| 14 | 13 | adantl | ⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ↔ 𝑥 = 𝑦 ) ) |
| 15 | 14 | necon3bbid | ⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( ¬ ( ( 1st ‘ 𝑥 ) = ( 1st ‘ 𝑦 ) ∧ ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 𝑦 ) ) ↔ 𝑥 ≠ 𝑦 ) ) |
| 16 | 12 15 | bitrid | ⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( ( ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ↔ 𝑥 ≠ 𝑦 ) ) |
| 17 | simplll | ⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) → 𝑅 ∈ Haus ) | |
| 18 | xp1st | ⊢ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 1st ‘ 𝑥 ) ∈ ∪ 𝑅 ) | |
| 19 | 18 | ad2antrl | ⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( 1st ‘ 𝑥 ) ∈ ∪ 𝑅 ) |
| 20 | 19 | adantr | ⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) → ( 1st ‘ 𝑥 ) ∈ ∪ 𝑅 ) |
| 21 | xp1st | ⊢ ( 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ) | |
| 22 | 21 | ad2antll | ⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ) |
| 23 | 22 | adantr | ⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) → ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ) |
| 24 | simpr | ⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) → ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) | |
| 25 | 5 | hausnei | ⊢ ( ( 𝑅 ∈ Haus ∧ ( ( 1st ‘ 𝑥 ) ∈ ∪ 𝑅 ∧ ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ) → ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑅 ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 26 | 17 20 23 24 25 | syl13anc | ⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) → ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑅 ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 27 | 1 | ad2antrr | ⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → 𝑅 ∈ Top ) |
| 28 | 27 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑅 ∈ Top ) |
| 29 | 2 | ad4antlr | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑆 ∈ Top ) |
| 30 | simprll | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑢 ∈ 𝑅 ) | |
| 31 | 6 | topopn | ⊢ ( 𝑆 ∈ Top → ∪ 𝑆 ∈ 𝑆 ) |
| 32 | 29 31 | syl | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ∪ 𝑆 ∈ 𝑆 ) |
| 33 | txopn | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑢 ∈ 𝑅 ∧ ∪ 𝑆 ∈ 𝑆 ) ) → ( 𝑢 × ∪ 𝑆 ) ∈ ( 𝑅 ×t 𝑆 ) ) | |
| 34 | 28 29 30 32 33 | syl22anc | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 𝑢 × ∪ 𝑆 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 35 | simprlr | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑣 ∈ 𝑅 ) | |
| 36 | txopn | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑣 ∈ 𝑅 ∧ ∪ 𝑆 ∈ 𝑆 ) ) → ( 𝑣 × ∪ 𝑆 ) ∈ ( 𝑅 ×t 𝑆 ) ) | |
| 37 | 28 29 35 32 36 | syl22anc | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 𝑣 × ∪ 𝑆 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 38 | 1st2nd2 | ⊢ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) | |
| 39 | 38 | ad2antrl | ⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
| 40 | 39 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
| 41 | simprr1 | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 1st ‘ 𝑥 ) ∈ 𝑢 ) | |
| 42 | xp2nd | ⊢ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 2nd ‘ 𝑥 ) ∈ ∪ 𝑆 ) | |
| 43 | 42 | ad2antrl | ⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( 2nd ‘ 𝑥 ) ∈ ∪ 𝑆 ) |
| 44 | 43 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 2nd ‘ 𝑥 ) ∈ ∪ 𝑆 ) |
| 45 | 41 44 | jca | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑥 ) ∈ ∪ 𝑆 ) ) |
| 46 | elxp6 | ⊢ ( 𝑥 ∈ ( 𝑢 × ∪ 𝑆 ) ↔ ( 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑥 ) ∈ ∪ 𝑆 ) ) ) | |
| 47 | 40 45 46 | sylanbrc | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑥 ∈ ( 𝑢 × ∪ 𝑆 ) ) |
| 48 | 1st2nd2 | ⊢ ( 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) | |
| 49 | 48 | ad2antll | ⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 50 | 49 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 51 | simprr2 | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 1st ‘ 𝑦 ) ∈ 𝑣 ) | |
| 52 | xp2nd | ⊢ ( 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) → ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) | |
| 53 | 52 | ad2antll | ⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) |
| 54 | 53 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) |
| 55 | 51 54 | jca | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) ) |
| 56 | elxp6 | ⊢ ( 𝑦 ∈ ( 𝑣 × ∪ 𝑆 ) ↔ ( 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ∧ ( ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) ) ) | |
| 57 | 50 55 56 | sylanbrc | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑦 ∈ ( 𝑣 × ∪ 𝑆 ) ) |
| 58 | simprr3 | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 𝑢 ∩ 𝑣 ) = ∅ ) | |
| 59 | 58 | xpeq1d | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ( 𝑢 ∩ 𝑣 ) × ∪ 𝑆 ) = ( ∅ × ∪ 𝑆 ) ) |
| 60 | xpindir | ⊢ ( ( 𝑢 ∩ 𝑣 ) × ∪ 𝑆 ) = ( ( 𝑢 × ∪ 𝑆 ) ∩ ( 𝑣 × ∪ 𝑆 ) ) | |
| 61 | 0xp | ⊢ ( ∅ × ∪ 𝑆 ) = ∅ | |
| 62 | 59 60 61 | 3eqtr3g | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ( 𝑢 × ∪ 𝑆 ) ∩ ( 𝑣 × ∪ 𝑆 ) ) = ∅ ) |
| 63 | eleq2 | ⊢ ( 𝑧 = ( 𝑢 × ∪ 𝑆 ) → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ ( 𝑢 × ∪ 𝑆 ) ) ) | |
| 64 | ineq1 | ⊢ ( 𝑧 = ( 𝑢 × ∪ 𝑆 ) → ( 𝑧 ∩ 𝑤 ) = ( ( 𝑢 × ∪ 𝑆 ) ∩ 𝑤 ) ) | |
| 65 | 64 | eqeq1d | ⊢ ( 𝑧 = ( 𝑢 × ∪ 𝑆 ) → ( ( 𝑧 ∩ 𝑤 ) = ∅ ↔ ( ( 𝑢 × ∪ 𝑆 ) ∩ 𝑤 ) = ∅ ) ) |
| 66 | 63 65 | 3anbi13d | ⊢ ( 𝑧 = ( 𝑢 × ∪ 𝑆 ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ( 𝑥 ∈ ( 𝑢 × ∪ 𝑆 ) ∧ 𝑦 ∈ 𝑤 ∧ ( ( 𝑢 × ∪ 𝑆 ) ∩ 𝑤 ) = ∅ ) ) ) |
| 67 | eleq2 | ⊢ ( 𝑤 = ( 𝑣 × ∪ 𝑆 ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ( 𝑣 × ∪ 𝑆 ) ) ) | |
| 68 | ineq2 | ⊢ ( 𝑤 = ( 𝑣 × ∪ 𝑆 ) → ( ( 𝑢 × ∪ 𝑆 ) ∩ 𝑤 ) = ( ( 𝑢 × ∪ 𝑆 ) ∩ ( 𝑣 × ∪ 𝑆 ) ) ) | |
| 69 | 68 | eqeq1d | ⊢ ( 𝑤 = ( 𝑣 × ∪ 𝑆 ) → ( ( ( 𝑢 × ∪ 𝑆 ) ∩ 𝑤 ) = ∅ ↔ ( ( 𝑢 × ∪ 𝑆 ) ∩ ( 𝑣 × ∪ 𝑆 ) ) = ∅ ) ) |
| 70 | 67 69 | 3anbi23d | ⊢ ( 𝑤 = ( 𝑣 × ∪ 𝑆 ) → ( ( 𝑥 ∈ ( 𝑢 × ∪ 𝑆 ) ∧ 𝑦 ∈ 𝑤 ∧ ( ( 𝑢 × ∪ 𝑆 ) ∩ 𝑤 ) = ∅ ) ↔ ( 𝑥 ∈ ( 𝑢 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( 𝑣 × ∪ 𝑆 ) ∧ ( ( 𝑢 × ∪ 𝑆 ) ∩ ( 𝑣 × ∪ 𝑆 ) ) = ∅ ) ) ) |
| 71 | 66 70 | rspc2ev | ⊢ ( ( ( 𝑢 × ∪ 𝑆 ) ∈ ( 𝑅 ×t 𝑆 ) ∧ ( 𝑣 × ∪ 𝑆 ) ∈ ( 𝑅 ×t 𝑆 ) ∧ ( 𝑥 ∈ ( 𝑢 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( 𝑣 × ∪ 𝑆 ) ∧ ( ( 𝑢 × ∪ 𝑆 ) ∩ ( 𝑣 × ∪ 𝑆 ) ) = ∅ ) ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 72 | 34 37 47 57 62 71 | syl113anc | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 73 | 72 | expr | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) ∧ ( 𝑢 ∈ 𝑅 ∧ 𝑣 ∈ 𝑅 ) ) → ( ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 74 | 73 | rexlimdvva | ⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) → ( ∃ 𝑢 ∈ 𝑅 ∃ 𝑣 ∈ 𝑅 ( ( 1st ‘ 𝑥 ) ∈ 𝑢 ∧ ( 1st ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 75 | 26 74 | mpd | ⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 76 | simpllr | ⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) → 𝑆 ∈ Haus ) | |
| 77 | 43 | adantr | ⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) → ( 2nd ‘ 𝑥 ) ∈ ∪ 𝑆 ) |
| 78 | 53 | adantr | ⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) → ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ) |
| 79 | simpr | ⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) → ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) | |
| 80 | 6 | hausnei | ⊢ ( ( 𝑆 ∈ Haus ∧ ( ( 2nd ‘ 𝑥 ) ∈ ∪ 𝑆 ∧ ( 2nd ‘ 𝑦 ) ∈ ∪ 𝑆 ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ) → ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ 𝑆 ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 81 | 76 77 78 79 80 | syl13anc | ⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) → ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ 𝑆 ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) |
| 82 | 27 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑅 ∈ Top ) |
| 83 | 2 | ad4antlr | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑆 ∈ Top ) |
| 84 | 5 | topopn | ⊢ ( 𝑅 ∈ Top → ∪ 𝑅 ∈ 𝑅 ) |
| 85 | 82 84 | syl | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ∪ 𝑅 ∈ 𝑅 ) |
| 86 | simprll | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑢 ∈ 𝑆 ) | |
| 87 | txopn | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( ∪ 𝑅 ∈ 𝑅 ∧ 𝑢 ∈ 𝑆 ) ) → ( ∪ 𝑅 × 𝑢 ) ∈ ( 𝑅 ×t 𝑆 ) ) | |
| 88 | 82 83 85 86 87 | syl22anc | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ∪ 𝑅 × 𝑢 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 89 | simprlr | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑣 ∈ 𝑆 ) | |
| 90 | txopn | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( ∪ 𝑅 ∈ 𝑅 ∧ 𝑣 ∈ 𝑆 ) ) → ( ∪ 𝑅 × 𝑣 ) ∈ ( 𝑅 ×t 𝑆 ) ) | |
| 91 | 82 83 85 89 90 | syl22anc | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ∪ 𝑅 × 𝑣 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 92 | 39 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
| 93 | 19 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 1st ‘ 𝑥 ) ∈ ∪ 𝑅 ) |
| 94 | simprr1 | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 2nd ‘ 𝑥 ) ∈ 𝑢 ) | |
| 95 | 93 94 | jca | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ( 1st ‘ 𝑥 ) ∈ ∪ 𝑅 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝑢 ) ) |
| 96 | elxp6 | ⊢ ( 𝑥 ∈ ( ∪ 𝑅 × 𝑢 ) ↔ ( 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ∧ ( ( 1st ‘ 𝑥 ) ∈ ∪ 𝑅 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝑢 ) ) ) | |
| 97 | 92 95 96 | sylanbrc | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑥 ∈ ( ∪ 𝑅 × 𝑢 ) ) |
| 98 | 49 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ) |
| 99 | 22 | ad2antrr | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ) |
| 100 | simprr2 | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 2nd ‘ 𝑦 ) ∈ 𝑣 ) | |
| 101 | 99 100 | jca | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ) ) |
| 102 | elxp6 | ⊢ ( 𝑦 ∈ ( ∪ 𝑅 × 𝑣 ) ↔ ( 𝑦 = 〈 ( 1st ‘ 𝑦 ) , ( 2nd ‘ 𝑦 ) 〉 ∧ ( ( 1st ‘ 𝑦 ) ∈ ∪ 𝑅 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ) ) ) | |
| 103 | 98 101 102 | sylanbrc | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → 𝑦 ∈ ( ∪ 𝑅 × 𝑣 ) ) |
| 104 | simprr3 | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( 𝑢 ∩ 𝑣 ) = ∅ ) | |
| 105 | 104 | xpeq2d | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ∪ 𝑅 × ( 𝑢 ∩ 𝑣 ) ) = ( ∪ 𝑅 × ∅ ) ) |
| 106 | xpindi | ⊢ ( ∪ 𝑅 × ( 𝑢 ∩ 𝑣 ) ) = ( ( ∪ 𝑅 × 𝑢 ) ∩ ( ∪ 𝑅 × 𝑣 ) ) | |
| 107 | xp0 | ⊢ ( ∪ 𝑅 × ∅ ) = ∅ | |
| 108 | 105 106 107 | 3eqtr3g | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ( ( ∪ 𝑅 × 𝑢 ) ∩ ( ∪ 𝑅 × 𝑣 ) ) = ∅ ) |
| 109 | eleq2 | ⊢ ( 𝑧 = ( ∪ 𝑅 × 𝑢 ) → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ ( ∪ 𝑅 × 𝑢 ) ) ) | |
| 110 | ineq1 | ⊢ ( 𝑧 = ( ∪ 𝑅 × 𝑢 ) → ( 𝑧 ∩ 𝑤 ) = ( ( ∪ 𝑅 × 𝑢 ) ∩ 𝑤 ) ) | |
| 111 | 110 | eqeq1d | ⊢ ( 𝑧 = ( ∪ 𝑅 × 𝑢 ) → ( ( 𝑧 ∩ 𝑤 ) = ∅ ↔ ( ( ∪ 𝑅 × 𝑢 ) ∩ 𝑤 ) = ∅ ) ) |
| 112 | 109 111 | 3anbi13d | ⊢ ( 𝑧 = ( ∪ 𝑅 × 𝑢 ) → ( ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ↔ ( 𝑥 ∈ ( ∪ 𝑅 × 𝑢 ) ∧ 𝑦 ∈ 𝑤 ∧ ( ( ∪ 𝑅 × 𝑢 ) ∩ 𝑤 ) = ∅ ) ) ) |
| 113 | eleq2 | ⊢ ( 𝑤 = ( ∪ 𝑅 × 𝑣 ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ ( ∪ 𝑅 × 𝑣 ) ) ) | |
| 114 | ineq2 | ⊢ ( 𝑤 = ( ∪ 𝑅 × 𝑣 ) → ( ( ∪ 𝑅 × 𝑢 ) ∩ 𝑤 ) = ( ( ∪ 𝑅 × 𝑢 ) ∩ ( ∪ 𝑅 × 𝑣 ) ) ) | |
| 115 | 114 | eqeq1d | ⊢ ( 𝑤 = ( ∪ 𝑅 × 𝑣 ) → ( ( ( ∪ 𝑅 × 𝑢 ) ∩ 𝑤 ) = ∅ ↔ ( ( ∪ 𝑅 × 𝑢 ) ∩ ( ∪ 𝑅 × 𝑣 ) ) = ∅ ) ) |
| 116 | 113 115 | 3anbi23d | ⊢ ( 𝑤 = ( ∪ 𝑅 × 𝑣 ) → ( ( 𝑥 ∈ ( ∪ 𝑅 × 𝑢 ) ∧ 𝑦 ∈ 𝑤 ∧ ( ( ∪ 𝑅 × 𝑢 ) ∩ 𝑤 ) = ∅ ) ↔ ( 𝑥 ∈ ( ∪ 𝑅 × 𝑢 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × 𝑣 ) ∧ ( ( ∪ 𝑅 × 𝑢 ) ∩ ( ∪ 𝑅 × 𝑣 ) ) = ∅ ) ) ) |
| 117 | 112 116 | rspc2ev | ⊢ ( ( ( ∪ 𝑅 × 𝑢 ) ∈ ( 𝑅 ×t 𝑆 ) ∧ ( ∪ 𝑅 × 𝑣 ) ∈ ( 𝑅 ×t 𝑆 ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × 𝑢 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × 𝑣 ) ∧ ( ( ∪ 𝑅 × 𝑢 ) ∩ ( ∪ 𝑅 × 𝑣 ) ) = ∅ ) ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 118 | 88 91 97 103 108 117 | syl113anc | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ∧ ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) ) ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 119 | 118 | expr | ⊢ ( ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ∧ ( 𝑢 ∈ 𝑆 ∧ 𝑣 ∈ 𝑆 ) ) → ( ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 120 | 119 | rexlimdvva | ⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) → ( ∃ 𝑢 ∈ 𝑆 ∃ 𝑣 ∈ 𝑆 ( ( 2nd ‘ 𝑥 ) ∈ 𝑢 ∧ ( 2nd ‘ 𝑦 ) ∈ 𝑣 ∧ ( 𝑢 ∩ 𝑣 ) = ∅ ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 121 | 81 120 | mpd | ⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 122 | 75 121 | jaodan | ⊢ ( ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) ∧ ( ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) |
| 123 | 122 | ex | ⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( ( ( 1st ‘ 𝑥 ) ≠ ( 1st ‘ 𝑦 ) ∨ ( 2nd ‘ 𝑥 ) ≠ ( 2nd ‘ 𝑦 ) ) → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 124 | 16 123 | sylbird | ⊢ ( ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) ∧ ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) ) → ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 125 | 124 | ex | ⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ( ( 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∧ 𝑦 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ) → ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) ) |
| 126 | 11 125 | sylbird | ⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ( ( 𝑥 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∧ 𝑦 ∈ ∪ ( 𝑅 ×t 𝑆 ) ) → ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) ) |
| 127 | 126 | ralrimivv | ⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ∀ 𝑥 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∀ 𝑦 ∈ ∪ ( 𝑅 ×t 𝑆 ) ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) |
| 128 | eqid | ⊢ ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) | |
| 129 | 128 | ishaus | ⊢ ( ( 𝑅 ×t 𝑆 ) ∈ Haus ↔ ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ∀ 𝑥 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∀ 𝑦 ∈ ∪ ( 𝑅 ×t 𝑆 ) ( 𝑥 ≠ 𝑦 → ∃ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ∃ 𝑤 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 ∧ 𝑦 ∈ 𝑤 ∧ ( 𝑧 ∩ 𝑤 ) = ∅ ) ) ) ) |
| 130 | 4 127 129 | sylanbrc | ⊢ ( ( 𝑅 ∈ Haus ∧ 𝑆 ∈ Haus ) → ( 𝑅 ×t 𝑆 ) ∈ Haus ) |