This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Neighborhood property of a Hausdorff space. (Contributed by NM, 8-Mar-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ist0.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | hausnei | ⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ∧ 𝑃 ≠ 𝑄 ) ) → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ist0.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | ishaus | ⊢ ( 𝐽 ∈ Haus ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) ) |
| 3 | 2 | simprbi | ⊢ ( 𝐽 ∈ Haus → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) |
| 4 | neeq1 | ⊢ ( 𝑥 = 𝑃 → ( 𝑥 ≠ 𝑦 ↔ 𝑃 ≠ 𝑦 ) ) | |
| 5 | eleq1 | ⊢ ( 𝑥 = 𝑃 → ( 𝑥 ∈ 𝑛 ↔ 𝑃 ∈ 𝑛 ) ) | |
| 6 | 5 | 3anbi1d | ⊢ ( 𝑥 = 𝑃 → ( ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ↔ ( 𝑃 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) |
| 7 | 6 | 2rexbidv | ⊢ ( 𝑥 = 𝑃 → ( ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ↔ ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑃 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) |
| 8 | 4 7 | imbi12d | ⊢ ( 𝑥 = 𝑃 → ( ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ↔ ( 𝑃 ≠ 𝑦 → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑃 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) ) |
| 9 | neeq2 | ⊢ ( 𝑦 = 𝑄 → ( 𝑃 ≠ 𝑦 ↔ 𝑃 ≠ 𝑄 ) ) | |
| 10 | eleq1 | ⊢ ( 𝑦 = 𝑄 → ( 𝑦 ∈ 𝑚 ↔ 𝑄 ∈ 𝑚 ) ) | |
| 11 | 10 | 3anbi2d | ⊢ ( 𝑦 = 𝑄 → ( ( 𝑃 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ↔ ( 𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) |
| 12 | 11 | 2rexbidv | ⊢ ( 𝑦 = 𝑄 → ( ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑃 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ↔ ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) |
| 13 | 9 12 | imbi12d | ⊢ ( 𝑦 = 𝑄 → ( ( 𝑃 ≠ 𝑦 → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑃 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ↔ ( 𝑃 ≠ 𝑄 → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) ) |
| 14 | 8 13 | rspc2v | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 ≠ 𝑦 → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑥 ∈ 𝑛 ∧ 𝑦 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) → ( 𝑃 ≠ 𝑄 → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) ) |
| 15 | 3 14 | syl5 | ⊢ ( ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ) → ( 𝐽 ∈ Haus → ( 𝑃 ≠ 𝑄 → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) ) |
| 16 | 15 | ex | ⊢ ( 𝑃 ∈ 𝑋 → ( 𝑄 ∈ 𝑋 → ( 𝐽 ∈ Haus → ( 𝑃 ≠ 𝑄 → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) ) ) |
| 17 | 16 | com3r | ⊢ ( 𝐽 ∈ Haus → ( 𝑃 ∈ 𝑋 → ( 𝑄 ∈ 𝑋 → ( 𝑃 ≠ 𝑄 → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) ) ) ) |
| 18 | 17 | 3imp2 | ⊢ ( ( 𝐽 ∈ Haus ∧ ( 𝑃 ∈ 𝑋 ∧ 𝑄 ∈ 𝑋 ∧ 𝑃 ≠ 𝑄 ) ) → ∃ 𝑛 ∈ 𝐽 ∃ 𝑚 ∈ 𝐽 ( 𝑃 ∈ 𝑛 ∧ 𝑄 ∈ 𝑚 ∧ ( 𝑛 ∩ 𝑚 ) = ∅ ) ) |