This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txcnmpt.1 | |- W = U. U |
|
| txcnmpt.2 | |- H = ( x e. W |-> <. ( F ` x ) , ( G ` x ) >. ) |
||
| Assertion | txcnmpt | |- ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) -> H e. ( U Cn ( R tX S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txcnmpt.1 | |- W = U. U |
|
| 2 | txcnmpt.2 | |- H = ( x e. W |-> <. ( F ` x ) , ( G ` x ) >. ) |
|
| 3 | eqid | |- U. R = U. R |
|
| 4 | 1 3 | cnf | |- ( F e. ( U Cn R ) -> F : W --> U. R ) |
| 5 | 4 | adantr | |- ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) -> F : W --> U. R ) |
| 6 | 5 | ffvelcdmda | |- ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ x e. W ) -> ( F ` x ) e. U. R ) |
| 7 | eqid | |- U. S = U. S |
|
| 8 | 1 7 | cnf | |- ( G e. ( U Cn S ) -> G : W --> U. S ) |
| 9 | 8 | adantl | |- ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) -> G : W --> U. S ) |
| 10 | 9 | ffvelcdmda | |- ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ x e. W ) -> ( G ` x ) e. U. S ) |
| 11 | 6 10 | opelxpd | |- ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ x e. W ) -> <. ( F ` x ) , ( G ` x ) >. e. ( U. R X. U. S ) ) |
| 12 | 11 2 | fmptd | |- ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) -> H : W --> ( U. R X. U. S ) ) |
| 13 | 2 | mptpreima | |- ( `' H " ( r X. s ) ) = { x e. W | <. ( F ` x ) , ( G ` x ) >. e. ( r X. s ) } |
| 14 | 5 | adantr | |- ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) -> F : W --> U. R ) |
| 15 | 14 | adantr | |- ( ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) /\ x e. W ) -> F : W --> U. R ) |
| 16 | ffn | |- ( F : W --> U. R -> F Fn W ) |
|
| 17 | elpreima | |- ( F Fn W -> ( x e. ( `' F " r ) <-> ( x e. W /\ ( F ` x ) e. r ) ) ) |
|
| 18 | 15 16 17 | 3syl | |- ( ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) /\ x e. W ) -> ( x e. ( `' F " r ) <-> ( x e. W /\ ( F ` x ) e. r ) ) ) |
| 19 | ibar | |- ( x e. W -> ( ( F ` x ) e. r <-> ( x e. W /\ ( F ` x ) e. r ) ) ) |
|
| 20 | 19 | adantl | |- ( ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) /\ x e. W ) -> ( ( F ` x ) e. r <-> ( x e. W /\ ( F ` x ) e. r ) ) ) |
| 21 | 18 20 | bitr4d | |- ( ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) /\ x e. W ) -> ( x e. ( `' F " r ) <-> ( F ` x ) e. r ) ) |
| 22 | 9 | ad2antrr | |- ( ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) /\ x e. W ) -> G : W --> U. S ) |
| 23 | ffn | |- ( G : W --> U. S -> G Fn W ) |
|
| 24 | elpreima | |- ( G Fn W -> ( x e. ( `' G " s ) <-> ( x e. W /\ ( G ` x ) e. s ) ) ) |
|
| 25 | 22 23 24 | 3syl | |- ( ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) /\ x e. W ) -> ( x e. ( `' G " s ) <-> ( x e. W /\ ( G ` x ) e. s ) ) ) |
| 26 | ibar | |- ( x e. W -> ( ( G ` x ) e. s <-> ( x e. W /\ ( G ` x ) e. s ) ) ) |
|
| 27 | 26 | adantl | |- ( ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) /\ x e. W ) -> ( ( G ` x ) e. s <-> ( x e. W /\ ( G ` x ) e. s ) ) ) |
| 28 | 25 27 | bitr4d | |- ( ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) /\ x e. W ) -> ( x e. ( `' G " s ) <-> ( G ` x ) e. s ) ) |
| 29 | 21 28 | anbi12d | |- ( ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) /\ x e. W ) -> ( ( x e. ( `' F " r ) /\ x e. ( `' G " s ) ) <-> ( ( F ` x ) e. r /\ ( G ` x ) e. s ) ) ) |
| 30 | elin | |- ( x e. ( ( `' F " r ) i^i ( `' G " s ) ) <-> ( x e. ( `' F " r ) /\ x e. ( `' G " s ) ) ) |
|
| 31 | opelxp | |- ( <. ( F ` x ) , ( G ` x ) >. e. ( r X. s ) <-> ( ( F ` x ) e. r /\ ( G ` x ) e. s ) ) |
|
| 32 | 29 30 31 | 3bitr4g | |- ( ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) /\ x e. W ) -> ( x e. ( ( `' F " r ) i^i ( `' G " s ) ) <-> <. ( F ` x ) , ( G ` x ) >. e. ( r X. s ) ) ) |
| 33 | 32 | rabbi2dva | |- ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) -> ( W i^i ( ( `' F " r ) i^i ( `' G " s ) ) ) = { x e. W | <. ( F ` x ) , ( G ` x ) >. e. ( r X. s ) } ) |
| 34 | inss1 | |- ( ( `' F " r ) i^i ( `' G " s ) ) C_ ( `' F " r ) |
|
| 35 | cnvimass | |- ( `' F " r ) C_ dom F |
|
| 36 | 34 35 | sstri | |- ( ( `' F " r ) i^i ( `' G " s ) ) C_ dom F |
| 37 | 36 14 | fssdm | |- ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) -> ( ( `' F " r ) i^i ( `' G " s ) ) C_ W ) |
| 38 | sseqin2 | |- ( ( ( `' F " r ) i^i ( `' G " s ) ) C_ W <-> ( W i^i ( ( `' F " r ) i^i ( `' G " s ) ) ) = ( ( `' F " r ) i^i ( `' G " s ) ) ) |
|
| 39 | 37 38 | sylib | |- ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) -> ( W i^i ( ( `' F " r ) i^i ( `' G " s ) ) ) = ( ( `' F " r ) i^i ( `' G " s ) ) ) |
| 40 | 33 39 | eqtr3d | |- ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) -> { x e. W | <. ( F ` x ) , ( G ` x ) >. e. ( r X. s ) } = ( ( `' F " r ) i^i ( `' G " s ) ) ) |
| 41 | 13 40 | eqtrid | |- ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) -> ( `' H " ( r X. s ) ) = ( ( `' F " r ) i^i ( `' G " s ) ) ) |
| 42 | cntop1 | |- ( G e. ( U Cn S ) -> U e. Top ) |
|
| 43 | 42 | adantl | |- ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) -> U e. Top ) |
| 44 | 43 | adantr | |- ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) -> U e. Top ) |
| 45 | cnima | |- ( ( F e. ( U Cn R ) /\ r e. R ) -> ( `' F " r ) e. U ) |
|
| 46 | 45 | ad2ant2r | |- ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) -> ( `' F " r ) e. U ) |
| 47 | cnima | |- ( ( G e. ( U Cn S ) /\ s e. S ) -> ( `' G " s ) e. U ) |
|
| 48 | 47 | ad2ant2l | |- ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) -> ( `' G " s ) e. U ) |
| 49 | inopn | |- ( ( U e. Top /\ ( `' F " r ) e. U /\ ( `' G " s ) e. U ) -> ( ( `' F " r ) i^i ( `' G " s ) ) e. U ) |
|
| 50 | 44 46 48 49 | syl3anc | |- ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) -> ( ( `' F " r ) i^i ( `' G " s ) ) e. U ) |
| 51 | 41 50 | eqeltrd | |- ( ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) /\ ( r e. R /\ s e. S ) ) -> ( `' H " ( r X. s ) ) e. U ) |
| 52 | 51 | ralrimivva | |- ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) -> A. r e. R A. s e. S ( `' H " ( r X. s ) ) e. U ) |
| 53 | vex | |- r e. _V |
|
| 54 | vex | |- s e. _V |
|
| 55 | 53 54 | xpex | |- ( r X. s ) e. _V |
| 56 | 55 | rgen2w | |- A. r e. R A. s e. S ( r X. s ) e. _V |
| 57 | eqid | |- ( r e. R , s e. S |-> ( r X. s ) ) = ( r e. R , s e. S |-> ( r X. s ) ) |
|
| 58 | imaeq2 | |- ( z = ( r X. s ) -> ( `' H " z ) = ( `' H " ( r X. s ) ) ) |
|
| 59 | 58 | eleq1d | |- ( z = ( r X. s ) -> ( ( `' H " z ) e. U <-> ( `' H " ( r X. s ) ) e. U ) ) |
| 60 | 57 59 | ralrnmpo | |- ( A. r e. R A. s e. S ( r X. s ) e. _V -> ( A. z e. ran ( r e. R , s e. S |-> ( r X. s ) ) ( `' H " z ) e. U <-> A. r e. R A. s e. S ( `' H " ( r X. s ) ) e. U ) ) |
| 61 | 56 60 | ax-mp | |- ( A. z e. ran ( r e. R , s e. S |-> ( r X. s ) ) ( `' H " z ) e. U <-> A. r e. R A. s e. S ( `' H " ( r X. s ) ) e. U ) |
| 62 | 52 61 | sylibr | |- ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) -> A. z e. ran ( r e. R , s e. S |-> ( r X. s ) ) ( `' H " z ) e. U ) |
| 63 | 1 | toptopon | |- ( U e. Top <-> U e. ( TopOn ` W ) ) |
| 64 | 43 63 | sylib | |- ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) -> U e. ( TopOn ` W ) ) |
| 65 | cntop2 | |- ( F e. ( U Cn R ) -> R e. Top ) |
|
| 66 | cntop2 | |- ( G e. ( U Cn S ) -> S e. Top ) |
|
| 67 | eqid | |- ran ( r e. R , s e. S |-> ( r X. s ) ) = ran ( r e. R , s e. S |-> ( r X. s ) ) |
|
| 68 | 67 | txval | |- ( ( R e. Top /\ S e. Top ) -> ( R tX S ) = ( topGen ` ran ( r e. R , s e. S |-> ( r X. s ) ) ) ) |
| 69 | 65 66 68 | syl2an | |- ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) -> ( R tX S ) = ( topGen ` ran ( r e. R , s e. S |-> ( r X. s ) ) ) ) |
| 70 | toptopon2 | |- ( R e. Top <-> R e. ( TopOn ` U. R ) ) |
|
| 71 | 65 70 | sylib | |- ( F e. ( U Cn R ) -> R e. ( TopOn ` U. R ) ) |
| 72 | toptopon2 | |- ( S e. Top <-> S e. ( TopOn ` U. S ) ) |
|
| 73 | 66 72 | sylib | |- ( G e. ( U Cn S ) -> S e. ( TopOn ` U. S ) ) |
| 74 | txtopon | |- ( ( R e. ( TopOn ` U. R ) /\ S e. ( TopOn ` U. S ) ) -> ( R tX S ) e. ( TopOn ` ( U. R X. U. S ) ) ) |
|
| 75 | 71 73 74 | syl2an | |- ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) -> ( R tX S ) e. ( TopOn ` ( U. R X. U. S ) ) ) |
| 76 | 64 69 75 | tgcn | |- ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) -> ( H e. ( U Cn ( R tX S ) ) <-> ( H : W --> ( U. R X. U. S ) /\ A. z e. ran ( r e. R , s e. S |-> ( r X. s ) ) ( `' H " z ) e. U ) ) ) |
| 77 | 12 62 76 | mpbir2and | |- ( ( F e. ( U Cn R ) /\ G e. ( U Cn S ) ) -> H e. ( U Cn ( R tX S ) ) ) |