This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The continuity predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015) (Revised by Mario Carneiro, 22-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tgcn.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| tgcn.3 | ⊢ ( 𝜑 → 𝐾 = ( topGen ‘ 𝐵 ) ) | ||
| tgcn.4 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| Assertion | tgcn | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tgcn.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | tgcn.3 | ⊢ ( 𝜑 → 𝐾 = ( topGen ‘ 𝐵 ) ) | |
| 3 | tgcn.4 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 4 | iscn | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) | |
| 5 | 1 3 4 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 6 | topontop | ⊢ ( 𝐾 ∈ ( TopOn ‘ 𝑌 ) → 𝐾 ∈ Top ) | |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 8 | 2 7 | eqeltrrd | ⊢ ( 𝜑 → ( topGen ‘ 𝐵 ) ∈ Top ) |
| 9 | tgclb | ⊢ ( 𝐵 ∈ TopBases ↔ ( topGen ‘ 𝐵 ) ∈ Top ) | |
| 10 | 8 9 | sylibr | ⊢ ( 𝜑 → 𝐵 ∈ TopBases ) |
| 11 | bastg | ⊢ ( 𝐵 ∈ TopBases → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) | |
| 12 | 10 11 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
| 13 | 12 2 | sseqtrrd | ⊢ ( 𝜑 → 𝐵 ⊆ 𝐾 ) |
| 14 | ssralv | ⊢ ( 𝐵 ⊆ 𝐾 → ( ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) | |
| 15 | 13 14 | syl | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 16 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐾 ↔ 𝑥 ∈ ( topGen ‘ 𝐵 ) ) ) |
| 17 | eltg3 | ⊢ ( 𝐵 ∈ TopBases → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧 ) ) ) | |
| 18 | 10 17 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧 ) ) ) |
| 19 | 16 18 | bitrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐾 ↔ ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧 ) ) ) |
| 20 | ssralv | ⊢ ( 𝑧 ⊆ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) | |
| 21 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 22 | 1 21 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 23 | iunopn | ⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) → ∪ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) | |
| 24 | 23 | ex | ⊢ ( 𝐽 ∈ Top → ( ∀ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∪ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 25 | 22 24 | syl | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∪ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 26 | 20 25 | sylan9r | ⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∪ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 27 | imaeq2 | ⊢ ( 𝑥 = ∪ 𝑧 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ ∪ 𝑧 ) ) | |
| 28 | imauni | ⊢ ( ◡ 𝐹 “ ∪ 𝑧 ) = ∪ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) | |
| 29 | 27 28 | eqtrdi | ⊢ ( 𝑥 = ∪ 𝑧 → ( ◡ 𝐹 “ 𝑥 ) = ∪ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ) |
| 30 | 29 | eleq1d | ⊢ ( 𝑥 = ∪ 𝑧 → ( ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ↔ ∪ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 31 | 30 | imbi2d | ⊢ ( 𝑥 = ∪ 𝑧 → ( ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ↔ ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∪ 𝑦 ∈ 𝑧 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 32 | 26 31 | syl5ibrcom | ⊢ ( ( 𝜑 ∧ 𝑧 ⊆ 𝐵 ) → ( 𝑥 = ∪ 𝑧 → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 33 | 32 | expimpd | ⊢ ( 𝜑 → ( ( 𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧 ) → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 34 | 33 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑧 ( 𝑧 ⊆ 𝐵 ∧ 𝑥 = ∪ 𝑧 ) → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 35 | 19 34 | sylbid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐾 → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) ) |
| 36 | 35 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐾 ) → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) |
| 37 | 36 | ralrimdva | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ) ) |
| 38 | imaeq2 | ⊢ ( 𝑥 = 𝑦 → ( ◡ 𝐹 “ 𝑥 ) = ( ◡ 𝐹 “ 𝑦 ) ) | |
| 39 | 38 | eleq1d | ⊢ ( 𝑥 = 𝑦 → ( ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ↔ ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 40 | 39 | cbvralvw | ⊢ ( ∀ 𝑥 ∈ 𝐾 ( ◡ 𝐹 “ 𝑥 ) ∈ 𝐽 ↔ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) |
| 41 | 37 40 | imbitrdi | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 → ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 42 | 15 41 | impbid | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ↔ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) |
| 43 | 42 | anbi2d | ⊢ ( 𝜑 → ( ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐾 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |
| 44 | 5 43 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝐵 ( ◡ 𝐹 “ 𝑦 ) ∈ 𝐽 ) ) ) |