This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological product of two first-countable spaces is first-countable. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tx1stc | ⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) → ( 𝑅 ×t 𝑆 ) ∈ 1stω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stctop | ⊢ ( 𝑅 ∈ 1stω → 𝑅 ∈ Top ) | |
| 2 | 1stctop | ⊢ ( 𝑆 ∈ 1stω → 𝑆 ∈ Top ) | |
| 3 | txtop | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) → ( 𝑅 ×t 𝑆 ) ∈ Top ) |
| 5 | eqid | ⊢ ∪ 𝑅 = ∪ 𝑅 | |
| 6 | 5 | 1stcclb | ⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑢 ∈ ∪ 𝑅 ) → ∃ 𝑎 ∈ 𝒫 𝑅 ( 𝑎 ≼ ω ∧ ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ) |
| 7 | 6 | ad2ant2r | ⊢ ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) → ∃ 𝑎 ∈ 𝒫 𝑅 ( 𝑎 ≼ ω ∧ ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ) |
| 8 | eqid | ⊢ ∪ 𝑆 = ∪ 𝑆 | |
| 9 | 8 | 1stcclb | ⊢ ( ( 𝑆 ∈ 1stω ∧ 𝑣 ∈ ∪ 𝑆 ) → ∃ 𝑏 ∈ 𝒫 𝑆 ( 𝑏 ≼ ω ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) |
| 10 | 9 | ad2ant2l | ⊢ ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) → ∃ 𝑏 ∈ 𝒫 𝑆 ( 𝑏 ≼ ω ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) |
| 11 | reeanv | ⊢ ( ∃ 𝑎 ∈ 𝒫 𝑅 ∃ 𝑏 ∈ 𝒫 𝑆 ( ( 𝑎 ≼ ω ∧ ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ∧ ( 𝑏 ≼ ω ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ↔ ( ∃ 𝑎 ∈ 𝒫 𝑅 ( 𝑎 ≼ ω ∧ ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ∧ ∃ 𝑏 ∈ 𝒫 𝑆 ( 𝑏 ≼ ω ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) | |
| 12 | an4 | ⊢ ( ( ( 𝑎 ≼ ω ∧ ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ∧ ( 𝑏 ≼ ω ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ↔ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) | |
| 13 | txopn | ⊢ ( ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ∧ ( 𝑚 ∈ 𝑅 ∧ 𝑛 ∈ 𝑆 ) ) → ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) | |
| 14 | 13 | ralrimivva | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ∀ 𝑚 ∈ 𝑅 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 15 | 1 2 14 | syl2an | ⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) → ∀ 𝑚 ∈ 𝑅 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 16 | 15 | adantr | ⊢ ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) → ∀ 𝑚 ∈ 𝑅 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 17 | elpwi | ⊢ ( 𝑎 ∈ 𝒫 𝑅 → 𝑎 ⊆ 𝑅 ) | |
| 18 | ssralv | ⊢ ( 𝑎 ⊆ 𝑅 → ( ∀ 𝑚 ∈ 𝑅 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) → ∀ 𝑚 ∈ 𝑎 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑎 ∈ 𝒫 𝑅 → ( ∀ 𝑚 ∈ 𝑅 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) → ∀ 𝑚 ∈ 𝑎 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) |
| 20 | elpwi | ⊢ ( 𝑏 ∈ 𝒫 𝑆 → 𝑏 ⊆ 𝑆 ) | |
| 21 | ssralv | ⊢ ( 𝑏 ⊆ 𝑆 → ( ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) → ∀ 𝑛 ∈ 𝑏 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) | |
| 22 | 20 21 | syl | ⊢ ( 𝑏 ∈ 𝒫 𝑆 → ( ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) → ∀ 𝑛 ∈ 𝑏 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) |
| 23 | 22 | ralimdv | ⊢ ( 𝑏 ∈ 𝒫 𝑆 → ( ∀ 𝑚 ∈ 𝑎 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) → ∀ 𝑚 ∈ 𝑎 ∀ 𝑛 ∈ 𝑏 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) |
| 24 | 19 23 | sylan9 | ⊢ ( ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) → ( ∀ 𝑚 ∈ 𝑅 ∀ 𝑛 ∈ 𝑆 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) → ∀ 𝑚 ∈ 𝑎 ∀ 𝑛 ∈ 𝑏 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) ) |
| 25 | 16 24 | mpan9 | ⊢ ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) → ∀ 𝑚 ∈ 𝑎 ∀ 𝑛 ∈ 𝑏 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ) |
| 26 | eqid | ⊢ ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) = ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) | |
| 27 | 26 | fmpo | ⊢ ( ∀ 𝑚 ∈ 𝑎 ∀ 𝑛 ∈ 𝑏 ( 𝑚 × 𝑛 ) ∈ ( 𝑅 ×t 𝑆 ) ↔ ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) : ( 𝑎 × 𝑏 ) ⟶ ( 𝑅 ×t 𝑆 ) ) |
| 28 | 25 27 | sylib | ⊢ ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) → ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) : ( 𝑎 × 𝑏 ) ⟶ ( 𝑅 ×t 𝑆 ) ) |
| 29 | 28 | frnd | ⊢ ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) → ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ⊆ ( 𝑅 ×t 𝑆 ) ) |
| 30 | ovex | ⊢ ( 𝑅 ×t 𝑆 ) ∈ V | |
| 31 | 30 | elpw2 | ⊢ ( ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ↔ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ⊆ ( 𝑅 ×t 𝑆 ) ) |
| 32 | 29 31 | sylibr | ⊢ ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) → ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ) |
| 33 | 32 | adantr | ⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ) |
| 34 | omelon | ⊢ ω ∈ On | |
| 35 | xpct | ⊢ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) → ( 𝑎 × 𝑏 ) ≼ ω ) | |
| 36 | ondomen | ⊢ ( ( ω ∈ On ∧ ( 𝑎 × 𝑏 ) ≼ ω ) → ( 𝑎 × 𝑏 ) ∈ dom card ) | |
| 37 | 34 35 36 | sylancr | ⊢ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) → ( 𝑎 × 𝑏 ) ∈ dom card ) |
| 38 | vex | ⊢ 𝑚 ∈ V | |
| 39 | vex | ⊢ 𝑛 ∈ V | |
| 40 | 38 39 | xpex | ⊢ ( 𝑚 × 𝑛 ) ∈ V |
| 41 | 26 40 | fnmpoi | ⊢ ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) Fn ( 𝑎 × 𝑏 ) |
| 42 | dffn4 | ⊢ ( ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) Fn ( 𝑎 × 𝑏 ) ↔ ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) : ( 𝑎 × 𝑏 ) –onto→ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ) | |
| 43 | 41 42 | mpbi | ⊢ ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) : ( 𝑎 × 𝑏 ) –onto→ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) |
| 44 | fodomnum | ⊢ ( ( 𝑎 × 𝑏 ) ∈ dom card → ( ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) : ( 𝑎 × 𝑏 ) –onto→ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) → ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ( 𝑎 × 𝑏 ) ) ) | |
| 45 | 37 43 44 | mpisyl | ⊢ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) → ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ( 𝑎 × 𝑏 ) ) |
| 46 | domtr | ⊢ ( ( ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ( 𝑎 × 𝑏 ) ∧ ( 𝑎 × 𝑏 ) ≼ ω ) → ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ω ) | |
| 47 | 45 35 46 | syl2anc | ⊢ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) → ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ω ) |
| 48 | 47 | ad2antrl | ⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ω ) |
| 49 | 1 2 | anim12i | ⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) → ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ) |
| 50 | 49 | ad3antrrr | ⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) ) |
| 51 | eltx | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑤 ∈ 𝑧 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) | |
| 52 | 50 51 | syl | ⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ( 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ↔ ∀ 𝑤 ∈ 𝑧 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) |
| 53 | eleq1 | ⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ↔ 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ) ) | |
| 54 | 53 | anbi1d | ⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ↔ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) |
| 55 | 54 | 2rexbidv | ⊢ ( 𝑤 = 〈 𝑢 , 𝑣 〉 → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ↔ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) |
| 56 | 55 | rspccv | ⊢ ( ∀ 𝑤 ∈ 𝑧 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) → ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) |
| 57 | r19.27v | ⊢ ( ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) → ∀ 𝑟 ∈ 𝑅 ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) | |
| 58 | r19.29 | ⊢ ( ( ∀ 𝑟 ∈ 𝑅 ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑟 ∈ 𝑅 ( ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) | |
| 59 | r19.29 | ⊢ ( ( ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑠 ∈ 𝑆 ( ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) | |
| 60 | opelxp | ⊢ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ↔ ( 𝑢 ∈ 𝑟 ∧ 𝑣 ∈ 𝑠 ) ) | |
| 61 | pm3.35 | ⊢ ( ( 𝑢 ∈ 𝑟 ∧ ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) | |
| 62 | pm3.35 | ⊢ ( ( 𝑣 ∈ 𝑠 ∧ ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) | |
| 63 | 61 62 | anim12i | ⊢ ( ( ( 𝑢 ∈ 𝑟 ∧ ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ∧ ( 𝑣 ∈ 𝑠 ∧ ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) → ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) |
| 64 | 63 | an4s | ⊢ ( ( ( 𝑢 ∈ 𝑟 ∧ 𝑣 ∈ 𝑠 ) ∧ ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) → ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) |
| 65 | 60 64 | sylanb | ⊢ ( ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) → ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) |
| 66 | 65 | anim1i | ⊢ ( ( ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) → ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) |
| 67 | 66 | anasss | ⊢ ( ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) |
| 68 | 67 | an12s | ⊢ ( ( ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) |
| 69 | 68 | expl | ⊢ ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) → ( ( ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) |
| 70 | 69 | reximdv | ⊢ ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) → ( ∃ 𝑠 ∈ 𝑆 ( ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑠 ∈ 𝑆 ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) |
| 71 | 59 70 | syl5 | ⊢ ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) → ( ( ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑠 ∈ 𝑆 ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) ) |
| 72 | 71 | impl | ⊢ ( ( ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑠 ∈ 𝑆 ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) |
| 73 | 72 | reximi | ⊢ ( ∃ 𝑟 ∈ 𝑅 ( ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) |
| 74 | 58 73 | syl | ⊢ ( ( ∀ 𝑟 ∈ 𝑅 ( ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) |
| 75 | 57 74 | sylan | ⊢ ( ( ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) |
| 76 | reeanv | ⊢ ( ∃ 𝑝 ∈ 𝑎 ∃ 𝑞 ∈ 𝑏 ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ↔ ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) | |
| 77 | simpr1l | ⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → 𝑝 ∈ 𝑎 ) | |
| 78 | simpr1r | ⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → 𝑞 ∈ 𝑏 ) | |
| 79 | eqidd | ⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( 𝑝 × 𝑞 ) = ( 𝑝 × 𝑞 ) ) | |
| 80 | xpeq1 | ⊢ ( 𝑚 = 𝑝 → ( 𝑚 × 𝑛 ) = ( 𝑝 × 𝑛 ) ) | |
| 81 | 80 | eqeq2d | ⊢ ( 𝑚 = 𝑝 → ( ( 𝑝 × 𝑞 ) = ( 𝑚 × 𝑛 ) ↔ ( 𝑝 × 𝑞 ) = ( 𝑝 × 𝑛 ) ) ) |
| 82 | xpeq2 | ⊢ ( 𝑛 = 𝑞 → ( 𝑝 × 𝑛 ) = ( 𝑝 × 𝑞 ) ) | |
| 83 | 82 | eqeq2d | ⊢ ( 𝑛 = 𝑞 → ( ( 𝑝 × 𝑞 ) = ( 𝑝 × 𝑛 ) ↔ ( 𝑝 × 𝑞 ) = ( 𝑝 × 𝑞 ) ) ) |
| 84 | 81 83 | rspc2ev | ⊢ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ∧ ( 𝑝 × 𝑞 ) = ( 𝑝 × 𝑞 ) ) → ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑏 ( 𝑝 × 𝑞 ) = ( 𝑚 × 𝑛 ) ) |
| 85 | 77 78 79 84 | syl3anc | ⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑏 ( 𝑝 × 𝑞 ) = ( 𝑚 × 𝑛 ) ) |
| 86 | vex | ⊢ 𝑝 ∈ V | |
| 87 | vex | ⊢ 𝑞 ∈ V | |
| 88 | 86 87 | xpex | ⊢ ( 𝑝 × 𝑞 ) ∈ V |
| 89 | eqeq1 | ⊢ ( 𝑥 = ( 𝑝 × 𝑞 ) → ( 𝑥 = ( 𝑚 × 𝑛 ) ↔ ( 𝑝 × 𝑞 ) = ( 𝑚 × 𝑛 ) ) ) | |
| 90 | 89 | 2rexbidv | ⊢ ( 𝑥 = ( 𝑝 × 𝑞 ) → ( ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑏 𝑥 = ( 𝑚 × 𝑛 ) ↔ ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑏 ( 𝑝 × 𝑞 ) = ( 𝑚 × 𝑛 ) ) ) |
| 91 | 88 90 | elab | ⊢ ( ( 𝑝 × 𝑞 ) ∈ { 𝑥 ∣ ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑏 𝑥 = ( 𝑚 × 𝑛 ) } ↔ ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑏 ( 𝑝 × 𝑞 ) = ( 𝑚 × 𝑛 ) ) |
| 92 | 85 91 | sylibr | ⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( 𝑝 × 𝑞 ) ∈ { 𝑥 ∣ ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑏 𝑥 = ( 𝑚 × 𝑛 ) } ) |
| 93 | 26 | rnmpo | ⊢ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) = { 𝑥 ∣ ∃ 𝑚 ∈ 𝑎 ∃ 𝑛 ∈ 𝑏 𝑥 = ( 𝑚 × 𝑛 ) } |
| 94 | 92 93 | eleqtrrdi | ⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( 𝑝 × 𝑞 ) ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ) |
| 95 | simpr2 | ⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) | |
| 96 | opelxpi | ⊢ ( ( 𝑢 ∈ 𝑝 ∧ 𝑣 ∈ 𝑞 ) → 〈 𝑢 , 𝑣 〉 ∈ ( 𝑝 × 𝑞 ) ) | |
| 97 | 96 | ad2ant2r | ⊢ ( ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) → 〈 𝑢 , 𝑣 〉 ∈ ( 𝑝 × 𝑞 ) ) |
| 98 | 95 97 | syl | ⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → 〈 𝑢 , 𝑣 〉 ∈ ( 𝑝 × 𝑞 ) ) |
| 99 | xpss12 | ⊢ ( ( 𝑝 ⊆ 𝑟 ∧ 𝑞 ⊆ 𝑠 ) → ( 𝑝 × 𝑞 ) ⊆ ( 𝑟 × 𝑠 ) ) | |
| 100 | 99 | ad2ant2l | ⊢ ( ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) → ( 𝑝 × 𝑞 ) ⊆ ( 𝑟 × 𝑠 ) ) |
| 101 | 95 100 | syl | ⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( 𝑝 × 𝑞 ) ⊆ ( 𝑟 × 𝑠 ) ) |
| 102 | simpr3 | ⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) | |
| 103 | 101 102 | sstrd | ⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ( 𝑝 × 𝑞 ) ⊆ 𝑧 ) |
| 104 | eleq2 | ⊢ ( 𝑤 = ( 𝑝 × 𝑞 ) → ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ↔ 〈 𝑢 , 𝑣 〉 ∈ ( 𝑝 × 𝑞 ) ) ) | |
| 105 | sseq1 | ⊢ ( 𝑤 = ( 𝑝 × 𝑞 ) → ( 𝑤 ⊆ 𝑧 ↔ ( 𝑝 × 𝑞 ) ⊆ 𝑧 ) ) | |
| 106 | 104 105 | anbi12d | ⊢ ( 𝑤 = ( 𝑝 × 𝑞 ) → ( ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑝 × 𝑞 ) ∧ ( 𝑝 × 𝑞 ) ⊆ 𝑧 ) ) ) |
| 107 | 106 | rspcev | ⊢ ( ( ( 𝑝 × 𝑞 ) ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ∧ ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑝 × 𝑞 ) ∧ ( 𝑝 × 𝑞 ) ⊆ 𝑧 ) ) → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) |
| 108 | 94 98 103 107 | syl12anc | ⊢ ( ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) ∧ ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) ∧ ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) |
| 109 | 108 | 3exp2 | ⊢ ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( 𝑝 ∈ 𝑎 ∧ 𝑞 ∈ 𝑏 ) → ( ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) → ( ( 𝑟 × 𝑠 ) ⊆ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 110 | 109 | rexlimdvv | ⊢ ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ∃ 𝑝 ∈ 𝑎 ∃ 𝑞 ∈ 𝑏 ( ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) → ( ( 𝑟 × 𝑠 ) ⊆ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 111 | 76 110 | biimtrrid | ⊢ ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) → ( ( 𝑟 × 𝑠 ) ⊆ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 112 | 111 | impd | ⊢ ( ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) ∧ ( 𝑟 ∈ 𝑅 ∧ 𝑠 ∈ 𝑆 ) ) → ( ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 113 | 112 | rexlimdvva | ⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( ( ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ∧ ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 114 | 75 113 | syl5 | ⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) → ( ( ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ∧ ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) ) → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 115 | 114 | expd | ⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ) → ( ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 116 | 115 | impr | ⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ( ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 〈 𝑢 , 𝑣 〉 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 117 | 56 116 | syl9r | ⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ( ∀ 𝑤 ∈ 𝑧 ∃ 𝑟 ∈ 𝑅 ∃ 𝑠 ∈ 𝑆 ( 𝑤 ∈ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ⊆ 𝑧 ) → ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 118 | 52 117 | sylbid | ⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ( 𝑧 ∈ ( 𝑅 ×t 𝑆 ) → ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 119 | 118 | ralrimiv | ⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 120 | breq1 | ⊢ ( 𝑦 = ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) → ( 𝑦 ≼ ω ↔ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ω ) ) | |
| 121 | rexeq | ⊢ ( 𝑦 = ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) → ( ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) | |
| 122 | 121 | imbi2d | ⊢ ( 𝑦 = ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) → ( ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 123 | 122 | ralbidv | ⊢ ( 𝑦 = ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) → ( ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 124 | 120 123 | anbi12d | ⊢ ( 𝑦 = ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) → ( ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ↔ ( ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 125 | 124 | rspcev | ⊢ ( ( ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ∧ ( ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ ran ( 𝑚 ∈ 𝑎 , 𝑛 ∈ 𝑏 ↦ ( 𝑚 × 𝑛 ) ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) → ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 126 | 33 48 119 125 | syl12anc | ⊢ ( ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) ∧ ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) ) → ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 127 | 126 | ex | ⊢ ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) → ( ( ( 𝑎 ≼ ω ∧ 𝑏 ≼ ω ) ∧ ( ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) → ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 128 | 12 127 | biimtrid | ⊢ ( ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) ∧ ( 𝑎 ∈ 𝒫 𝑅 ∧ 𝑏 ∈ 𝒫 𝑆 ) ) → ( ( ( 𝑎 ≼ ω ∧ ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ∧ ( 𝑏 ≼ ω ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) → ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 129 | 128 | rexlimdvva | ⊢ ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) → ( ∃ 𝑎 ∈ 𝒫 𝑅 ∃ 𝑏 ∈ 𝒫 𝑆 ( ( 𝑎 ≼ ω ∧ ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ∧ ( 𝑏 ≼ ω ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) → ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 130 | 11 129 | biimtrrid | ⊢ ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) → ( ( ∃ 𝑎 ∈ 𝒫 𝑅 ( 𝑎 ≼ ω ∧ ∀ 𝑟 ∈ 𝑅 ( 𝑢 ∈ 𝑟 → ∃ 𝑝 ∈ 𝑎 ( 𝑢 ∈ 𝑝 ∧ 𝑝 ⊆ 𝑟 ) ) ) ∧ ∃ 𝑏 ∈ 𝒫 𝑆 ( 𝑏 ≼ ω ∧ ∀ 𝑠 ∈ 𝑆 ( 𝑣 ∈ 𝑠 → ∃ 𝑞 ∈ 𝑏 ( 𝑣 ∈ 𝑞 ∧ 𝑞 ⊆ 𝑠 ) ) ) ) → ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 131 | 7 10 130 | mp2and | ⊢ ( ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) ∧ ( 𝑢 ∈ ∪ 𝑅 ∧ 𝑣 ∈ ∪ 𝑆 ) ) → ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 132 | 131 | ralrimivva | ⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) → ∀ 𝑢 ∈ ∪ 𝑅 ∀ 𝑣 ∈ ∪ 𝑆 ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 133 | eleq1 | ⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( 𝑥 ∈ 𝑧 ↔ 〈 𝑢 , 𝑣 〉 ∈ 𝑧 ) ) | |
| 134 | eleq1 | ⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( 𝑥 ∈ 𝑤 ↔ 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ) ) | |
| 135 | 134 | anbi1d | ⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 136 | 135 | rexbidv | ⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
| 137 | 133 136 | imbi12d | ⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 138 | 137 | ralbidv | ⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 139 | 138 | anbi2d | ⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ↔ ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 140 | 139 | rexbidv | ⊢ ( 𝑥 = 〈 𝑢 , 𝑣 〉 → ( ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ↔ ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 141 | 140 | ralxp | ⊢ ( ∀ 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ↔ ∀ 𝑢 ∈ ∪ 𝑅 ∀ 𝑣 ∈ ∪ 𝑆 ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 〈 𝑢 , 𝑣 〉 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 〈 𝑢 , 𝑣 〉 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 142 | 132 141 | sylibr | ⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) → ∀ 𝑥 ∈ ( ∪ 𝑅 × ∪ 𝑆 ) ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 143 | 5 8 | txuni | ⊢ ( ( 𝑅 ∈ Top ∧ 𝑆 ∈ Top ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 144 | 1 2 143 | syl2an | ⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) → ( ∪ 𝑅 × ∪ 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) ) |
| 145 | 142 144 | raleqtrdv | ⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) → ∀ 𝑥 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
| 146 | eqid | ⊢ ∪ ( 𝑅 ×t 𝑆 ) = ∪ ( 𝑅 ×t 𝑆 ) | |
| 147 | 146 | is1stc2 | ⊢ ( ( 𝑅 ×t 𝑆 ) ∈ 1stω ↔ ( ( 𝑅 ×t 𝑆 ) ∈ Top ∧ ∀ 𝑥 ∈ ∪ ( 𝑅 ×t 𝑆 ) ∃ 𝑦 ∈ 𝒫 ( 𝑅 ×t 𝑆 ) ( 𝑦 ≼ ω ∧ ∀ 𝑧 ∈ ( 𝑅 ×t 𝑆 ) ( 𝑥 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑦 ( 𝑥 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) |
| 148 | 4 145 147 | sylanbrc | ⊢ ( ( 𝑅 ∈ 1stω ∧ 𝑆 ∈ 1stω ) → ( 𝑅 ×t 𝑆 ) ∈ 1stω ) |