This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cartesian product of two countable sets is countable. (Contributed by Thierry Arnoux, 24-Sep-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpct | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( 𝐴 × 𝐵 ) ≼ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctex | ⊢ ( 𝐵 ≼ ω → 𝐵 ∈ V ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → 𝐵 ∈ V ) |
| 3 | simpl | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → 𝐴 ≼ ω ) | |
| 4 | xpdom1g | ⊢ ( ( 𝐵 ∈ V ∧ 𝐴 ≼ ω ) → ( 𝐴 × 𝐵 ) ≼ ( ω × 𝐵 ) ) | |
| 5 | 2 3 4 | syl2anc | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( 𝐴 × 𝐵 ) ≼ ( ω × 𝐵 ) ) |
| 6 | omex | ⊢ ω ∈ V | |
| 7 | 6 | xpdom2 | ⊢ ( 𝐵 ≼ ω → ( ω × 𝐵 ) ≼ ( ω × ω ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( ω × 𝐵 ) ≼ ( ω × ω ) ) |
| 9 | domtr | ⊢ ( ( ( 𝐴 × 𝐵 ) ≼ ( ω × 𝐵 ) ∧ ( ω × 𝐵 ) ≼ ( ω × ω ) ) → ( 𝐴 × 𝐵 ) ≼ ( ω × ω ) ) | |
| 10 | 5 8 9 | syl2anc | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( 𝐴 × 𝐵 ) ≼ ( ω × ω ) ) |
| 11 | xpomen | ⊢ ( ω × ω ) ≈ ω | |
| 12 | domentr | ⊢ ( ( ( 𝐴 × 𝐵 ) ≼ ( ω × ω ) ∧ ( ω × ω ) ≈ ω ) → ( 𝐴 × 𝐵 ) ≼ ω ) | |
| 13 | 10 11 12 | sylancl | ⊢ ( ( 𝐴 ≼ ω ∧ 𝐵 ≼ ω ) → ( 𝐴 × 𝐵 ) ≼ ω ) |