This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The topological product of two second-countable spaces is second-countable. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tx2ndc | ⊢ ( ( 𝑅 ∈ 2ndω ∧ 𝑆 ∈ 2ndω ) → ( 𝑅 ×t 𝑆 ) ∈ 2ndω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | is2ndc | ⊢ ( 𝑅 ∈ 2ndω ↔ ∃ 𝑟 ∈ TopBases ( 𝑟 ≼ ω ∧ ( topGen ‘ 𝑟 ) = 𝑅 ) ) | |
| 2 | is2ndc | ⊢ ( 𝑆 ∈ 2ndω ↔ ∃ 𝑠 ∈ TopBases ( 𝑠 ≼ ω ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) | |
| 3 | reeanv | ⊢ ( ∃ 𝑟 ∈ TopBases ∃ 𝑠 ∈ TopBases ( ( 𝑟 ≼ ω ∧ ( topGen ‘ 𝑟 ) = 𝑅 ) ∧ ( 𝑠 ≼ ω ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) ↔ ( ∃ 𝑟 ∈ TopBases ( 𝑟 ≼ ω ∧ ( topGen ‘ 𝑟 ) = 𝑅 ) ∧ ∃ 𝑠 ∈ TopBases ( 𝑠 ≼ ω ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) ) | |
| 4 | an4 | ⊢ ( ( ( 𝑟 ≼ ω ∧ ( topGen ‘ 𝑟 ) = 𝑅 ) ∧ ( 𝑠 ≼ ω ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) ↔ ( ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ∧ ( ( topGen ‘ 𝑟 ) = 𝑅 ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) ) | |
| 5 | txbasval | ⊢ ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) → ( ( topGen ‘ 𝑟 ) ×t ( topGen ‘ 𝑠 ) ) = ( 𝑟 ×t 𝑠 ) ) | |
| 6 | eqid | ⊢ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) = ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) | |
| 7 | 6 | txval | ⊢ ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) → ( 𝑟 ×t 𝑠 ) = ( topGen ‘ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 8 | 5 7 | eqtrd | ⊢ ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) → ( ( topGen ‘ 𝑟 ) ×t ( topGen ‘ 𝑠 ) ) = ( topGen ‘ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( ( topGen ‘ 𝑟 ) ×t ( topGen ‘ 𝑠 ) ) = ( topGen ‘ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) ) |
| 10 | 6 | txbas | ⊢ ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) → ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ∈ TopBases ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ∈ TopBases ) |
| 12 | omelon | ⊢ ω ∈ On | |
| 13 | vex | ⊢ 𝑠 ∈ V | |
| 14 | 13 | xpdom1 | ⊢ ( 𝑟 ≼ ω → ( 𝑟 × 𝑠 ) ≼ ( ω × 𝑠 ) ) |
| 15 | omex | ⊢ ω ∈ V | |
| 16 | 15 | xpdom2 | ⊢ ( 𝑠 ≼ ω → ( ω × 𝑠 ) ≼ ( ω × ω ) ) |
| 17 | domtr | ⊢ ( ( ( 𝑟 × 𝑠 ) ≼ ( ω × 𝑠 ) ∧ ( ω × 𝑠 ) ≼ ( ω × ω ) ) → ( 𝑟 × 𝑠 ) ≼ ( ω × ω ) ) | |
| 18 | 14 16 17 | syl2an | ⊢ ( ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) → ( 𝑟 × 𝑠 ) ≼ ( ω × ω ) ) |
| 19 | 18 | adantl | ⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( 𝑟 × 𝑠 ) ≼ ( ω × ω ) ) |
| 20 | xpomen | ⊢ ( ω × ω ) ≈ ω | |
| 21 | domentr | ⊢ ( ( ( 𝑟 × 𝑠 ) ≼ ( ω × ω ) ∧ ( ω × ω ) ≈ ω ) → ( 𝑟 × 𝑠 ) ≼ ω ) | |
| 22 | 19 20 21 | sylancl | ⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( 𝑟 × 𝑠 ) ≼ ω ) |
| 23 | ondomen | ⊢ ( ( ω ∈ On ∧ ( 𝑟 × 𝑠 ) ≼ ω ) → ( 𝑟 × 𝑠 ) ∈ dom card ) | |
| 24 | 12 22 23 | sylancr | ⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( 𝑟 × 𝑠 ) ∈ dom card ) |
| 25 | eqid | ⊢ ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) = ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) | |
| 26 | vex | ⊢ 𝑥 ∈ V | |
| 27 | vex | ⊢ 𝑦 ∈ V | |
| 28 | 26 27 | xpex | ⊢ ( 𝑥 × 𝑦 ) ∈ V |
| 29 | 25 28 | fnmpoi | ⊢ ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) Fn ( 𝑟 × 𝑠 ) |
| 30 | 29 | a1i | ⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) Fn ( 𝑟 × 𝑠 ) ) |
| 31 | dffn4 | ⊢ ( ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) Fn ( 𝑟 × 𝑠 ) ↔ ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) : ( 𝑟 × 𝑠 ) –onto→ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) | |
| 32 | 30 31 | sylib | ⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) : ( 𝑟 × 𝑠 ) –onto→ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) |
| 33 | fodomnum | ⊢ ( ( 𝑟 × 𝑠 ) ∈ dom card → ( ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) : ( 𝑟 × 𝑠 ) –onto→ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) → ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ≼ ( 𝑟 × 𝑠 ) ) ) | |
| 34 | 24 32 33 | sylc | ⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ≼ ( 𝑟 × 𝑠 ) ) |
| 35 | domtr | ⊢ ( ( ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ≼ ( 𝑟 × 𝑠 ) ∧ ( 𝑟 × 𝑠 ) ≼ ω ) → ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ≼ ω ) | |
| 36 | 34 22 35 | syl2anc | ⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ≼ ω ) |
| 37 | 2ndci | ⊢ ( ( ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ∈ TopBases ∧ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ≼ ω ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) ∈ 2ndω ) | |
| 38 | 11 36 37 | syl2anc | ⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( topGen ‘ ran ( 𝑥 ∈ 𝑟 , 𝑦 ∈ 𝑠 ↦ ( 𝑥 × 𝑦 ) ) ) ∈ 2ndω ) |
| 39 | 9 38 | eqeltrd | ⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( ( topGen ‘ 𝑟 ) ×t ( topGen ‘ 𝑠 ) ) ∈ 2ndω ) |
| 40 | oveq12 | ⊢ ( ( ( topGen ‘ 𝑟 ) = 𝑅 ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) → ( ( topGen ‘ 𝑟 ) ×t ( topGen ‘ 𝑠 ) ) = ( 𝑅 ×t 𝑆 ) ) | |
| 41 | 40 | eleq1d | ⊢ ( ( ( topGen ‘ 𝑟 ) = 𝑅 ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) → ( ( ( topGen ‘ 𝑟 ) ×t ( topGen ‘ 𝑠 ) ) ∈ 2ndω ↔ ( 𝑅 ×t 𝑆 ) ∈ 2ndω ) ) |
| 42 | 39 41 | syl5ibcom | ⊢ ( ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) ∧ ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ) → ( ( ( topGen ‘ 𝑟 ) = 𝑅 ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) → ( 𝑅 ×t 𝑆 ) ∈ 2ndω ) ) |
| 43 | 42 | expimpd | ⊢ ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) → ( ( ( 𝑟 ≼ ω ∧ 𝑠 ≼ ω ) ∧ ( ( topGen ‘ 𝑟 ) = 𝑅 ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) → ( 𝑅 ×t 𝑆 ) ∈ 2ndω ) ) |
| 44 | 4 43 | biimtrid | ⊢ ( ( 𝑟 ∈ TopBases ∧ 𝑠 ∈ TopBases ) → ( ( ( 𝑟 ≼ ω ∧ ( topGen ‘ 𝑟 ) = 𝑅 ) ∧ ( 𝑠 ≼ ω ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) → ( 𝑅 ×t 𝑆 ) ∈ 2ndω ) ) |
| 45 | 44 | rexlimivv | ⊢ ( ∃ 𝑟 ∈ TopBases ∃ 𝑠 ∈ TopBases ( ( 𝑟 ≼ ω ∧ ( topGen ‘ 𝑟 ) = 𝑅 ) ∧ ( 𝑠 ≼ ω ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) → ( 𝑅 ×t 𝑆 ) ∈ 2ndω ) |
| 46 | 3 45 | sylbir | ⊢ ( ( ∃ 𝑟 ∈ TopBases ( 𝑟 ≼ ω ∧ ( topGen ‘ 𝑟 ) = 𝑅 ) ∧ ∃ 𝑠 ∈ TopBases ( 𝑠 ≼ ω ∧ ( topGen ‘ 𝑠 ) = 𝑆 ) ) → ( 𝑅 ×t 𝑆 ) ∈ 2ndω ) |
| 47 | 1 2 46 | syl2anb | ⊢ ( ( 𝑅 ∈ 2ndω ∧ 𝑆 ∈ 2ndω ) → ( 𝑅 ×t 𝑆 ) ∈ 2ndω ) |