This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topological vector space is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tlmtgp | ⊢ ( 𝑊 ∈ TopMod → 𝑊 ∈ TopGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tlmlmod | ⊢ ( 𝑊 ∈ TopMod → 𝑊 ∈ LMod ) | |
| 2 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 3 | 1 2 | syl | ⊢ ( 𝑊 ∈ TopMod → 𝑊 ∈ Grp ) |
| 4 | tlmtmd | ⊢ ( 𝑊 ∈ TopMod → 𝑊 ∈ TopMnd ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) | |
| 7 | 5 6 | grpinvf | ⊢ ( 𝑊 ∈ Grp → ( invg ‘ 𝑊 ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 8 | 3 7 | syl | ⊢ ( 𝑊 ∈ TopMod → ( invg ‘ 𝑊 ) : ( Base ‘ 𝑊 ) ⟶ ( Base ‘ 𝑊 ) ) |
| 9 | 8 | feqmptd | ⊢ ( 𝑊 ∈ TopMod → ( invg ‘ 𝑊 ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( ( invg ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
| 10 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 11 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 12 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 13 | eqid | ⊢ ( invg ‘ ( Scalar ‘ 𝑊 ) ) = ( invg ‘ ( Scalar ‘ 𝑊 ) ) | |
| 14 | 5 6 10 11 12 13 | lmodvneg1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑥 ) = ( ( invg ‘ 𝑊 ) ‘ 𝑥 ) ) |
| 15 | 1 14 | sylan | ⊢ ( ( 𝑊 ∈ TopMod ∧ 𝑥 ∈ ( Base ‘ 𝑊 ) ) → ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑥 ) = ( ( invg ‘ 𝑊 ) ‘ 𝑥 ) ) |
| 16 | 15 | mpteq2dva | ⊢ ( 𝑊 ∈ TopMod → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( ( invg ‘ 𝑊 ) ‘ 𝑥 ) ) ) |
| 17 | 9 16 | eqtr4d | ⊢ ( 𝑊 ∈ TopMod → ( invg ‘ 𝑊 ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ) ) |
| 18 | eqid | ⊢ ( TopOpen ‘ 𝑊 ) = ( TopOpen ‘ 𝑊 ) | |
| 19 | eqid | ⊢ ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) = ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) | |
| 20 | id | ⊢ ( 𝑊 ∈ TopMod → 𝑊 ∈ TopMod ) | |
| 21 | tlmtps | ⊢ ( 𝑊 ∈ TopMod → 𝑊 ∈ TopSp ) | |
| 22 | 5 18 | istps | ⊢ ( 𝑊 ∈ TopSp ↔ ( TopOpen ‘ 𝑊 ) ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 23 | 21 22 | sylib | ⊢ ( 𝑊 ∈ TopMod → ( TopOpen ‘ 𝑊 ) ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 24 | 10 | tlmscatps | ⊢ ( 𝑊 ∈ TopMod → ( Scalar ‘ 𝑊 ) ∈ TopSp ) |
| 25 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 26 | 25 19 | istps | ⊢ ( ( Scalar ‘ 𝑊 ) ∈ TopSp ↔ ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( TopOn ‘ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 27 | 24 26 | sylib | ⊢ ( 𝑊 ∈ TopMod → ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( TopOn ‘ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 28 | 10 | lmodring | ⊢ ( 𝑊 ∈ LMod → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
| 29 | 1 28 | syl | ⊢ ( 𝑊 ∈ TopMod → ( Scalar ‘ 𝑊 ) ∈ Ring ) |
| 30 | ringgrp | ⊢ ( ( Scalar ‘ 𝑊 ) ∈ Ring → ( Scalar ‘ 𝑊 ) ∈ Grp ) | |
| 31 | 29 30 | syl | ⊢ ( 𝑊 ∈ TopMod → ( Scalar ‘ 𝑊 ) ∈ Grp ) |
| 32 | 25 12 | ringidcl | ⊢ ( ( Scalar ‘ 𝑊 ) ∈ Ring → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 33 | 29 32 | syl | ⊢ ( 𝑊 ∈ TopMod → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 34 | 25 13 | grpinvcl | ⊢ ( ( ( Scalar ‘ 𝑊 ) ∈ Grp ∧ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 35 | 31 33 34 | syl2anc | ⊢ ( 𝑊 ∈ TopMod → ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 36 | 23 27 35 | cnmptc | ⊢ ( 𝑊 ∈ TopMod → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ) ∈ ( ( TopOpen ‘ 𝑊 ) Cn ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
| 37 | 23 | cnmptid | ⊢ ( 𝑊 ∈ TopMod → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ 𝑥 ) ∈ ( ( TopOpen ‘ 𝑊 ) Cn ( TopOpen ‘ 𝑊 ) ) ) |
| 38 | 10 11 18 19 20 23 36 37 | cnmpt1vsca | ⊢ ( 𝑊 ∈ TopMod → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( ( ( invg ‘ ( Scalar ‘ 𝑊 ) ) ‘ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ) ∈ ( ( TopOpen ‘ 𝑊 ) Cn ( TopOpen ‘ 𝑊 ) ) ) |
| 39 | 17 38 | eqeltrd | ⊢ ( 𝑊 ∈ TopMod → ( invg ‘ 𝑊 ) ∈ ( ( TopOpen ‘ 𝑊 ) Cn ( TopOpen ‘ 𝑊 ) ) ) |
| 40 | 18 6 | istgp | ⊢ ( 𝑊 ∈ TopGrp ↔ ( 𝑊 ∈ Grp ∧ 𝑊 ∈ TopMnd ∧ ( invg ‘ 𝑊 ) ∈ ( ( TopOpen ‘ 𝑊 ) Cn ( TopOpen ‘ 𝑊 ) ) ) ) |
| 41 | 3 4 39 40 | syl3anbrc | ⊢ ( 𝑊 ∈ TopMod → 𝑊 ∈ TopGrp ) |