This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of scalar multiplication; analogue of cnmpt12f which cannot be used directly because .s is not a function. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tlmtrg.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| cnmpt1vsca.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| cnmpt1vsca.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | ||
| cnmpt1vsca.k | ⊢ 𝐾 = ( TopOpen ‘ 𝐹 ) | ||
| cnmpt1vsca.w | ⊢ ( 𝜑 → 𝑊 ∈ TopMod ) | ||
| cnmpt1vsca.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| cnmpt1vsca.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐿 Cn 𝐾 ) ) | ||
| cnmpt1vsca.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐿 Cn 𝐽 ) ) | ||
| Assertion | cnmpt1vsca | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · 𝐵 ) ) ∈ ( 𝐿 Cn 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tlmtrg.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | cnmpt1vsca.t | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | cnmpt1vsca.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| 4 | cnmpt1vsca.k | ⊢ 𝐾 = ( TopOpen ‘ 𝐹 ) | |
| 5 | cnmpt1vsca.w | ⊢ ( 𝜑 → 𝑊 ∈ TopMod ) | |
| 6 | cnmpt1vsca.l | ⊢ ( 𝜑 → 𝐿 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 7 | cnmpt1vsca.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐿 Cn 𝐾 ) ) | |
| 8 | cnmpt1vsca.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐿 Cn 𝐽 ) ) | |
| 9 | 1 | tlmscatps | ⊢ ( 𝑊 ∈ TopMod → 𝐹 ∈ TopSp ) |
| 10 | 5 9 | syl | ⊢ ( 𝜑 → 𝐹 ∈ TopSp ) |
| 11 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 12 | 11 4 | istps | ⊢ ( 𝐹 ∈ TopSp ↔ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐹 ) ) ) |
| 13 | 10 12 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐹 ) ) ) |
| 14 | cnf2 | ⊢ ( ( 𝐿 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ ( Base ‘ 𝐹 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐿 Cn 𝐾 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ( Base ‘ 𝐹 ) ) | |
| 15 | 6 13 7 14 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ( Base ‘ 𝐹 ) ) |
| 16 | 15 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ( Base ‘ 𝐹 ) ) |
| 17 | tlmtps | ⊢ ( 𝑊 ∈ TopMod → 𝑊 ∈ TopSp ) | |
| 18 | 5 17 | syl | ⊢ ( 𝜑 → 𝑊 ∈ TopSp ) |
| 19 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 20 | 19 3 | istps | ⊢ ( 𝑊 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 21 | 18 20 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 22 | cnf2 | ⊢ ( ( 𝐿 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐿 Cn 𝐽 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ( Base ‘ 𝑊 ) ) | |
| 23 | 6 21 8 22 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ( Base ‘ 𝑊 ) ) |
| 24 | 23 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ( Base ‘ 𝑊 ) ) |
| 25 | eqid | ⊢ ( ·sf ‘ 𝑊 ) = ( ·sf ‘ 𝑊 ) | |
| 26 | 19 1 11 25 2 | scafval | ⊢ ( ( 𝐴 ∈ ( Base ‘ 𝐹 ) ∧ 𝐵 ∈ ( Base ‘ 𝑊 ) ) → ( 𝐴 ( ·sf ‘ 𝑊 ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 27 | 16 24 26 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 ( ·sf ‘ 𝑊 ) 𝐵 ) = ( 𝐴 · 𝐵 ) ) |
| 28 | 27 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( ·sf ‘ 𝑊 ) 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · 𝐵 ) ) ) |
| 29 | 25 3 1 4 | vscacn | ⊢ ( 𝑊 ∈ TopMod → ( ·sf ‘ 𝑊 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
| 30 | 5 29 | syl | ⊢ ( 𝜑 → ( ·sf ‘ 𝑊 ) ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
| 31 | 6 7 8 30 | cnmpt12f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( ·sf ‘ 𝑊 ) 𝐵 ) ) ∈ ( 𝐿 Cn 𝐽 ) ) |
| 32 | 28 31 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 · 𝐵 ) ) ∈ ( 𝐿 Cn 𝐽 ) ) |