This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A topological vector space is a topological group. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | tlmtgp | |- ( W e. TopMod -> W e. TopGrp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tlmlmod | |- ( W e. TopMod -> W e. LMod ) |
|
| 2 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
| 3 | 1 2 | syl | |- ( W e. TopMod -> W e. Grp ) |
| 4 | tlmtmd | |- ( W e. TopMod -> W e. TopMnd ) |
|
| 5 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 6 | eqid | |- ( invg ` W ) = ( invg ` W ) |
|
| 7 | 5 6 | grpinvf | |- ( W e. Grp -> ( invg ` W ) : ( Base ` W ) --> ( Base ` W ) ) |
| 8 | 3 7 | syl | |- ( W e. TopMod -> ( invg ` W ) : ( Base ` W ) --> ( Base ` W ) ) |
| 9 | 8 | feqmptd | |- ( W e. TopMod -> ( invg ` W ) = ( x e. ( Base ` W ) |-> ( ( invg ` W ) ` x ) ) ) |
| 10 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 11 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 12 | eqid | |- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
|
| 13 | eqid | |- ( invg ` ( Scalar ` W ) ) = ( invg ` ( Scalar ` W ) ) |
|
| 14 | 5 6 10 11 12 13 | lmodvneg1 | |- ( ( W e. LMod /\ x e. ( Base ` W ) ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) x ) = ( ( invg ` W ) ` x ) ) |
| 15 | 1 14 | sylan | |- ( ( W e. TopMod /\ x e. ( Base ` W ) ) -> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) x ) = ( ( invg ` W ) ` x ) ) |
| 16 | 15 | mpteq2dva | |- ( W e. TopMod -> ( x e. ( Base ` W ) |-> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) x ) ) = ( x e. ( Base ` W ) |-> ( ( invg ` W ) ` x ) ) ) |
| 17 | 9 16 | eqtr4d | |- ( W e. TopMod -> ( invg ` W ) = ( x e. ( Base ` W ) |-> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) x ) ) ) |
| 18 | eqid | |- ( TopOpen ` W ) = ( TopOpen ` W ) |
|
| 19 | eqid | |- ( TopOpen ` ( Scalar ` W ) ) = ( TopOpen ` ( Scalar ` W ) ) |
|
| 20 | id | |- ( W e. TopMod -> W e. TopMod ) |
|
| 21 | tlmtps | |- ( W e. TopMod -> W e. TopSp ) |
|
| 22 | 5 18 | istps | |- ( W e. TopSp <-> ( TopOpen ` W ) e. ( TopOn ` ( Base ` W ) ) ) |
| 23 | 21 22 | sylib | |- ( W e. TopMod -> ( TopOpen ` W ) e. ( TopOn ` ( Base ` W ) ) ) |
| 24 | 10 | tlmscatps | |- ( W e. TopMod -> ( Scalar ` W ) e. TopSp ) |
| 25 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 26 | 25 19 | istps | |- ( ( Scalar ` W ) e. TopSp <-> ( TopOpen ` ( Scalar ` W ) ) e. ( TopOn ` ( Base ` ( Scalar ` W ) ) ) ) |
| 27 | 24 26 | sylib | |- ( W e. TopMod -> ( TopOpen ` ( Scalar ` W ) ) e. ( TopOn ` ( Base ` ( Scalar ` W ) ) ) ) |
| 28 | 10 | lmodring | |- ( W e. LMod -> ( Scalar ` W ) e. Ring ) |
| 29 | 1 28 | syl | |- ( W e. TopMod -> ( Scalar ` W ) e. Ring ) |
| 30 | ringgrp | |- ( ( Scalar ` W ) e. Ring -> ( Scalar ` W ) e. Grp ) |
|
| 31 | 29 30 | syl | |- ( W e. TopMod -> ( Scalar ` W ) e. Grp ) |
| 32 | 25 12 | ringidcl | |- ( ( Scalar ` W ) e. Ring -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 33 | 29 32 | syl | |- ( W e. TopMod -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 34 | 25 13 | grpinvcl | |- ( ( ( Scalar ` W ) e. Grp /\ ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 35 | 31 33 34 | syl2anc | |- ( W e. TopMod -> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 36 | 23 27 35 | cnmptc | |- ( W e. TopMod -> ( x e. ( Base ` W ) |-> ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ) e. ( ( TopOpen ` W ) Cn ( TopOpen ` ( Scalar ` W ) ) ) ) |
| 37 | 23 | cnmptid | |- ( W e. TopMod -> ( x e. ( Base ` W ) |-> x ) e. ( ( TopOpen ` W ) Cn ( TopOpen ` W ) ) ) |
| 38 | 10 11 18 19 20 23 36 37 | cnmpt1vsca | |- ( W e. TopMod -> ( x e. ( Base ` W ) |-> ( ( ( invg ` ( Scalar ` W ) ) ` ( 1r ` ( Scalar ` W ) ) ) ( .s ` W ) x ) ) e. ( ( TopOpen ` W ) Cn ( TopOpen ` W ) ) ) |
| 39 | 17 38 | eqeltrd | |- ( W e. TopMod -> ( invg ` W ) e. ( ( TopOpen ` W ) Cn ( TopOpen ` W ) ) ) |
| 40 | 18 6 | istgp | |- ( W e. TopGrp <-> ( W e. Grp /\ W e. TopMnd /\ ( invg ` W ) e. ( ( TopOpen ` W ) Cn ( TopOpen ` W ) ) ) ) |
| 41 | 3 4 39 40 | syl3anbrc | |- ( W e. TopMod -> W e. TopGrp ) |