This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem tvctlm

Description: A topological vector space is a topological module. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Assertion tvctlm ( 𝑊 ∈ TopVec → 𝑊 ∈ TopMod )

Proof

Step Hyp Ref Expression
1 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
2 1 istvc ( 𝑊 ∈ TopVec ↔ ( 𝑊 ∈ TopMod ∧ ( Scalar ‘ 𝑊 ) ∈ TopDRing ) )
3 2 simplbi ( 𝑊 ∈ TopVec → 𝑊 ∈ TopMod )