This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Minus 1 times a vector is the negative of the vector. Equation 2 of Kreyszig p. 51. (Contributed by NM, 18-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvneg1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| lmodvneg1.n | ⊢ 𝑁 = ( invg ‘ 𝑊 ) | ||
| lmodvneg1.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| lmodvneg1.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lmodvneg1.u | ⊢ 1 = ( 1r ‘ 𝐹 ) | ||
| lmodvneg1.m | ⊢ 𝑀 = ( invg ‘ 𝐹 ) | ||
| Assertion | lmodvneg1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑀 ‘ 1 ) · 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvneg1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | lmodvneg1.n | ⊢ 𝑁 = ( invg ‘ 𝑊 ) | |
| 3 | lmodvneg1.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | lmodvneg1.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 5 | lmodvneg1.u | ⊢ 1 = ( 1r ‘ 𝐹 ) | |
| 6 | lmodvneg1.m | ⊢ 𝑀 = ( invg ‘ 𝐹 ) | |
| 7 | simpl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ LMod ) | |
| 8 | 3 | lmodfgrp | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Grp ) |
| 9 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 10 | 3 9 5 | lmod1cl | ⊢ ( 𝑊 ∈ LMod → 1 ∈ ( Base ‘ 𝐹 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 1 ∈ ( Base ‘ 𝐹 ) ) |
| 12 | 9 6 | grpinvcl | ⊢ ( ( 𝐹 ∈ Grp ∧ 1 ∈ ( Base ‘ 𝐹 ) ) → ( 𝑀 ‘ 1 ) ∈ ( Base ‘ 𝐹 ) ) |
| 13 | 8 11 12 | syl2an2r | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ 1 ) ∈ ( Base ‘ 𝐹 ) ) |
| 14 | simpr | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 15 | 1 3 4 9 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑀 ‘ 1 ) ∈ ( Base ‘ 𝐹 ) ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑀 ‘ 1 ) · 𝑋 ) ∈ 𝑉 ) |
| 16 | 7 13 14 15 | syl3anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑀 ‘ 1 ) · 𝑋 ) ∈ 𝑉 ) |
| 17 | eqid | ⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) | |
| 18 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 19 | 1 17 18 | lmod0vrid | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑀 ‘ 1 ) · 𝑋 ) ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( ( 𝑀 ‘ 1 ) · 𝑋 ) ) |
| 20 | 16 19 | syldan | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( ( 𝑀 ‘ 1 ) · 𝑋 ) ) |
| 21 | 1 2 | lmodvnegcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) ∈ 𝑉 ) |
| 22 | 1 17 | lmodass | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝑉 ) ) → ( ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) = ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 23 | 7 16 14 21 22 | syl13anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) = ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) ) ) |
| 24 | 1 3 4 5 | lmodvs1 | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 1 · 𝑋 ) = 𝑋 ) |
| 25 | 24 | oveq2d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 1 · 𝑋 ) ) = ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) 𝑋 ) ) |
| 26 | eqid | ⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) | |
| 27 | eqid | ⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) | |
| 28 | 9 26 27 6 | grplinv | ⊢ ( ( 𝐹 ∈ Grp ∧ 1 ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝑀 ‘ 1 ) ( +g ‘ 𝐹 ) 1 ) = ( 0g ‘ 𝐹 ) ) |
| 29 | 8 11 28 | syl2an2r | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑀 ‘ 1 ) ( +g ‘ 𝐹 ) 1 ) = ( 0g ‘ 𝐹 ) ) |
| 30 | 29 | oveq1d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) ( +g ‘ 𝐹 ) 1 ) · 𝑋 ) = ( ( 0g ‘ 𝐹 ) · 𝑋 ) ) |
| 31 | 1 17 3 4 9 26 | lmodvsdir | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ( 𝑀 ‘ 1 ) ∈ ( Base ‘ 𝐹 ) ∧ 1 ∈ ( Base ‘ 𝐹 ) ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( 𝑀 ‘ 1 ) ( +g ‘ 𝐹 ) 1 ) · 𝑋 ) = ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 1 · 𝑋 ) ) ) |
| 32 | 7 13 11 14 31 | syl13anc | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) ( +g ‘ 𝐹 ) 1 ) · 𝑋 ) = ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 1 · 𝑋 ) ) ) |
| 33 | 1 3 4 27 18 | lmod0vs | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ 𝐹 ) · 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
| 34 | 30 32 33 | 3eqtr3d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 1 · 𝑋 ) ) = ( 0g ‘ 𝑊 ) ) |
| 35 | 25 34 | eqtr3d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) 𝑋 ) = ( 0g ‘ 𝑊 ) ) |
| 36 | 35 | oveq1d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) = ( ( 0g ‘ 𝑊 ) ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 37 | 23 36 | eqtr3d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) ) = ( ( 0g ‘ 𝑊 ) ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) ) |
| 38 | 1 17 18 2 | lmodvnegid | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) = ( 0g ‘ 𝑊 ) ) |
| 39 | 38 | oveq2d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 𝑋 ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) ) = ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) |
| 40 | 1 17 18 | lmod0vlid | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ 𝑋 ) ∈ 𝑉 ) → ( ( 0g ‘ 𝑊 ) ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 41 | 21 40 | syldan | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 0g ‘ 𝑊 ) ( +g ‘ 𝑊 ) ( 𝑁 ‘ 𝑋 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 42 | 37 39 41 | 3eqtr3d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( ( 𝑀 ‘ 1 ) · 𝑋 ) ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| 43 | 20 42 | eqtr3d | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ) → ( ( 𝑀 ‘ 1 ) · 𝑋 ) = ( 𝑁 ‘ 𝑋 ) ) |