This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.

Metamath Proof Explorer


Theorem tlmtps

Description: A topological module is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015)

Ref Expression
Assertion tlmtps ( 𝑊 ∈ TopMod → 𝑊 ∈ TopSp )

Proof

Step Hyp Ref Expression
1 tlmtmd ( 𝑊 ∈ TopMod → 𝑊 ∈ TopMnd )
2 tmdtps ( 𝑊 ∈ TopMnd → 𝑊 ∈ TopSp )
3 1 2 syl ( 𝑊 ∈ TopMod → 𝑊 ∈ TopSp )