This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two thin categories are isomorphic iff the induced preorders are order-isomorphic. Example 3.26(2) of Adamek p. 33. Note that "thincciso.u" is redundant thanks to elbasfv . (Contributed by Zhi Wang, 16-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincciso.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| thincciso.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| thincciso.r | ⊢ 𝑅 = ( Base ‘ 𝑋 ) | ||
| thincciso.s | ⊢ 𝑆 = ( Base ‘ 𝑌 ) | ||
| thincciso.h | ⊢ 𝐻 = ( Hom ‘ 𝑋 ) | ||
| thincciso.j | ⊢ 𝐽 = ( Hom ‘ 𝑌 ) | ||
| thincciso.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| thincciso.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| thincciso.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| thincciso.xt | ⊢ ( 𝜑 → 𝑋 ∈ ThinCat ) | ||
| thincciso.yt | ⊢ ( 𝜑 → 𝑌 ∈ ThinCat ) | ||
| Assertion | thincciso | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ∃ 𝑓 ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincciso.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | thincciso.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | thincciso.r | ⊢ 𝑅 = ( Base ‘ 𝑋 ) | |
| 4 | thincciso.s | ⊢ 𝑆 = ( Base ‘ 𝑌 ) | |
| 5 | thincciso.h | ⊢ 𝐻 = ( Hom ‘ 𝑋 ) | |
| 6 | thincciso.j | ⊢ 𝐽 = ( Hom ‘ 𝑌 ) | |
| 7 | thincciso.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 8 | thincciso.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 9 | thincciso.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 10 | thincciso.xt | ⊢ ( 𝜑 → 𝑋 ∈ ThinCat ) | |
| 11 | thincciso.yt | ⊢ ( 𝜑 → 𝑌 ∈ ThinCat ) | |
| 12 | eqid | ⊢ ( Iso ‘ 𝐶 ) = ( Iso ‘ 𝐶 ) | |
| 13 | 1 | catccat | ⊢ ( 𝑈 ∈ 𝑉 → 𝐶 ∈ Cat ) |
| 14 | 7 13 | syl | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
| 15 | 12 2 14 8 9 | cic | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ∃ 𝑎 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ) |
| 16 | opex | ⊢ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ V | |
| 17 | 16 | a1i | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ V ) |
| 18 | biimp | ⊢ ( ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) → ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ) | |
| 19 | 18 | 2ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ) |
| 20 | 19 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ) |
| 21 | 11 | adantr | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 𝑌 ∈ ThinCat ) |
| 22 | eqid | ⊢ ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) = ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) | |
| 23 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 𝑋 ∈ ThinCat ) |
| 24 | 23 | thinccd | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 𝑋 ∈ Cat ) |
| 25 | simprr | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) | |
| 26 | f1of | ⊢ ( 𝑓 : 𝑅 –1-1-onto→ 𝑆 → 𝑓 : 𝑅 ⟶ 𝑆 ) | |
| 27 | 25 26 | syl | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 𝑓 : 𝑅 ⟶ 𝑆 ) |
| 28 | biimpr | ⊢ ( ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) | |
| 29 | 28 | 2ralimi | ⊢ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 30 | 29 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 31 | 3 4 5 6 24 21 27 22 30 | functhinc | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → ( 𝑓 ( 𝑋 Func 𝑌 ) ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ↔ ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) = ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ) ) |
| 32 | 22 31 | mpbiri | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 𝑓 ( 𝑋 Func 𝑌 ) ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 33 | 3 6 5 21 32 | fullthinc | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → ( 𝑓 ( 𝑋 Full 𝑌 ) ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ↔ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ) ) |
| 34 | 20 33 | mpbird | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 𝑓 ( 𝑋 Full 𝑌 ) ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 35 | df-br | ⊢ ( 𝑓 ( 𝑋 Full 𝑌 ) ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ↔ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( 𝑋 Full 𝑌 ) ) | |
| 36 | 34 35 | sylib | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( 𝑋 Full 𝑌 ) ) |
| 37 | 23 32 | thincfth | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 𝑓 ( 𝑋 Faith 𝑌 ) ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ) |
| 38 | df-br | ⊢ ( 𝑓 ( 𝑋 Faith 𝑌 ) ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ↔ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( 𝑋 Faith 𝑌 ) ) | |
| 39 | 37 38 | sylib | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( 𝑋 Faith 𝑌 ) ) |
| 40 | 36 39 | elind | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ) |
| 41 | vex | ⊢ 𝑓 ∈ V | |
| 42 | 3 | fvexi | ⊢ 𝑅 ∈ V |
| 43 | 42 42 | mpoex | ⊢ ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) ∈ V |
| 44 | 41 43 | op1st | ⊢ ( 1st ‘ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ) = 𝑓 |
| 45 | f1oeq1 | ⊢ ( ( 1st ‘ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ) = 𝑓 → ( ( 1st ‘ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ) : 𝑅 –1-1-onto→ 𝑆 ↔ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) | |
| 46 | 44 45 | ax-mp | ⊢ ( ( 1st ‘ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ) : 𝑅 –1-1-onto→ 𝑆 ↔ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) |
| 47 | 25 46 | sylibr | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → ( 1st ‘ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ) : 𝑅 –1-1-onto→ 𝑆 ) |
| 48 | 40 47 | jca | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → ( 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st ‘ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ) : 𝑅 –1-1-onto→ 𝑆 ) ) |
| 49 | 1 2 3 4 7 8 9 12 | catciso | ⊢ ( 𝜑 → ( 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ↔ ( 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st ‘ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ) : 𝑅 –1-1-onto→ 𝑆 ) ) ) |
| 50 | 49 | biimpar | ⊢ ( ( 𝜑 ∧ ( 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st ‘ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ) : 𝑅 –1-1-onto→ 𝑆 ) ) → 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 51 | 48 50 | syldan | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 52 | eleq1 | ⊢ ( 𝑎 = 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 → ( 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ↔ 〈 𝑓 , ( 𝑧 ∈ 𝑅 , 𝑤 ∈ 𝑅 ↦ ( ( 𝑧 𝐻 𝑤 ) × ( ( 𝑓 ‘ 𝑧 ) 𝐽 ( 𝑓 ‘ 𝑤 ) ) ) ) 〉 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ) | |
| 53 | 17 51 52 | spcedv | ⊢ ( ( 𝜑 ∧ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) → ∃ 𝑎 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) |
| 54 | 53 | ex | ⊢ ( 𝜑 → ( ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) → ∃ 𝑎 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ) |
| 55 | 54 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑓 ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) → ∃ 𝑎 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ) |
| 56 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ( 1st ‘ 𝑎 ) ∈ V ) | |
| 57 | relfull | ⊢ Rel ( 𝑋 Full 𝑌 ) | |
| 58 | 1 2 3 4 7 8 9 12 | catciso | ⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ↔ ( 𝑎 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st ‘ 𝑎 ) : 𝑅 –1-1-onto→ 𝑆 ) ) ) |
| 59 | 58 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ( 𝑎 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ∧ ( 1st ‘ 𝑎 ) : 𝑅 –1-1-onto→ 𝑆 ) ) |
| 60 | 59 | simpld | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑎 ∈ ( ( 𝑋 Full 𝑌 ) ∩ ( 𝑋 Faith 𝑌 ) ) ) |
| 61 | 60 | elin1d | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑎 ∈ ( 𝑋 Full 𝑌 ) ) |
| 62 | 1st2ndbr | ⊢ ( ( Rel ( 𝑋 Full 𝑌 ) ∧ 𝑎 ∈ ( 𝑋 Full 𝑌 ) ) → ( 1st ‘ 𝑎 ) ( 𝑋 Full 𝑌 ) ( 2nd ‘ 𝑎 ) ) | |
| 63 | 57 61 62 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ( 1st ‘ 𝑎 ) ( 𝑋 Full 𝑌 ) ( 2nd ‘ 𝑎 ) ) |
| 64 | 11 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → 𝑌 ∈ ThinCat ) |
| 65 | fullfunc | ⊢ ( 𝑋 Full 𝑌 ) ⊆ ( 𝑋 Func 𝑌 ) | |
| 66 | 65 | ssbri | ⊢ ( ( 1st ‘ 𝑎 ) ( 𝑋 Full 𝑌 ) ( 2nd ‘ 𝑎 ) → ( 1st ‘ 𝑎 ) ( 𝑋 Func 𝑌 ) ( 2nd ‘ 𝑎 ) ) |
| 67 | 63 66 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ( 1st ‘ 𝑎 ) ( 𝑋 Func 𝑌 ) ( 2nd ‘ 𝑎 ) ) |
| 68 | 3 6 5 64 67 | fullthinc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ( ( 1st ‘ 𝑎 ) ( 𝑋 Full 𝑌 ) ( 2nd ‘ 𝑎 ) ↔ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ) ) |
| 69 | 63 68 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ) |
| 70 | 67 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 1st ‘ 𝑎 ) ( 𝑋 Func 𝑌 ) ( 2nd ‘ 𝑎 ) ) |
| 71 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → 𝑥 ∈ 𝑅 ) | |
| 72 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → 𝑦 ∈ 𝑅 ) | |
| 73 | 3 5 6 70 71 72 | funcf2 | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( 𝑥 ( 2nd ‘ 𝑎 ) 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) ) |
| 74 | 73 | f002 | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 75 | 74 | ralrimivva | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 76 | 2ralbiim | ⊢ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ↔ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ∧ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ → ( 𝑥 𝐻 𝑦 ) = ∅ ) ) ) | |
| 77 | 69 75 76 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ) |
| 78 | 59 | simprd | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ( 1st ‘ 𝑎 ) : 𝑅 –1-1-onto→ 𝑆 ) |
| 79 | 77 78 | jca | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ∧ ( 1st ‘ 𝑎 ) : 𝑅 –1-1-onto→ 𝑆 ) ) |
| 80 | fveq1 | ⊢ ( 𝑓 = ( 1st ‘ 𝑎 ) → ( 𝑓 ‘ 𝑥 ) = ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) ) | |
| 81 | fveq1 | ⊢ ( 𝑓 = ( 1st ‘ 𝑎 ) → ( 𝑓 ‘ 𝑦 ) = ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) | |
| 82 | 80 81 | oveq12d | ⊢ ( 𝑓 = ( 1st ‘ 𝑎 ) → ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) ) |
| 83 | 82 | eqeq1d | ⊢ ( 𝑓 = ( 1st ‘ 𝑎 ) → ( ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ↔ ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ) |
| 84 | 83 | bibi2d | ⊢ ( 𝑓 = ( 1st ‘ 𝑎 ) → ( ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ↔ ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ) ) |
| 85 | 84 | 2ralbidv | ⊢ ( 𝑓 = ( 1st ‘ 𝑎 ) → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ) ) |
| 86 | f1oeq1 | ⊢ ( 𝑓 = ( 1st ‘ 𝑎 ) → ( 𝑓 : 𝑅 –1-1-onto→ 𝑆 ↔ ( 1st ‘ 𝑎 ) : 𝑅 –1-1-onto→ 𝑆 ) ) | |
| 87 | 85 86 | anbi12d | ⊢ ( 𝑓 = ( 1st ‘ 𝑎 ) → ( ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ↔ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( ( 1st ‘ 𝑎 ) ‘ 𝑥 ) 𝐽 ( ( 1st ‘ 𝑎 ) ‘ 𝑦 ) ) = ∅ ) ∧ ( 1st ‘ 𝑎 ) : 𝑅 –1-1-onto→ 𝑆 ) ) ) |
| 88 | 56 79 87 | spcedv | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) |
| 89 | 88 | ex | ⊢ ( 𝜑 → ( 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) ) |
| 90 | 89 | exlimdv | ⊢ ( 𝜑 → ( ∃ 𝑎 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) ) |
| 91 | 55 90 | impbid | ⊢ ( 𝜑 → ( ∃ 𝑓 ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ↔ ∃ 𝑎 𝑎 ∈ ( 𝑋 ( Iso ‘ 𝐶 ) 𝑌 ) ) ) |
| 92 | 15 91 | bitr4d | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ∃ 𝑓 ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) ) |