This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two thin categories are isomorphic if the induced preorders are order-isomorphic (deduction form). Example 3.26(2) of Adamek p. 33. (Contributed by Zhi Wang, 22-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thinccisod.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| thinccisod.r | ⊢ 𝑅 = ( Base ‘ 𝑋 ) | ||
| thinccisod.s | ⊢ 𝑆 = ( Base ‘ 𝑌 ) | ||
| thinccisod.h | ⊢ 𝐻 = ( Hom ‘ 𝑋 ) | ||
| thinccisod.j | ⊢ 𝐽 = ( Hom ‘ 𝑌 ) | ||
| thinccisod.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| thinccisod.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | ||
| thinccisod.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | ||
| thinccisod.xt | ⊢ ( 𝜑 → 𝑋 ∈ ThinCat ) | ||
| thinccisod.yt | ⊢ ( 𝜑 → 𝑌 ∈ ThinCat ) | ||
| thinccisod.f | ⊢ ( 𝜑 → 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) | ||
| thinccisod.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) | ||
| Assertion | thinccisod | ⊢ ( 𝜑 → 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thinccisod.c | ⊢ 𝐶 = ( CatCat ‘ 𝑈 ) | |
| 2 | thinccisod.r | ⊢ 𝑅 = ( Base ‘ 𝑋 ) | |
| 3 | thinccisod.s | ⊢ 𝑆 = ( Base ‘ 𝑌 ) | |
| 4 | thinccisod.h | ⊢ 𝐻 = ( Hom ‘ 𝑋 ) | |
| 5 | thinccisod.j | ⊢ 𝐽 = ( Hom ‘ 𝑌 ) | |
| 6 | thinccisod.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 7 | thinccisod.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑈 ) | |
| 8 | thinccisod.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑈 ) | |
| 9 | thinccisod.xt | ⊢ ( 𝜑 → 𝑋 ∈ ThinCat ) | |
| 10 | thinccisod.yt | ⊢ ( 𝜑 → 𝑌 ∈ ThinCat ) | |
| 11 | thinccisod.f | ⊢ ( 𝜑 → 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) | |
| 12 | thinccisod.1 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑅 ) ) → ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) | |
| 13 | f1of | ⊢ ( 𝐹 : 𝑅 –1-1-onto→ 𝑆 → 𝐹 : 𝑅 ⟶ 𝑆 ) | |
| 14 | 11 13 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑅 ⟶ 𝑆 ) |
| 15 | fvexd | ⊢ ( 𝜑 → ( Base ‘ 𝑋 ) ∈ V ) | |
| 16 | 2 15 | eqeltrid | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 17 | 14 16 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 18 | 12 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) |
| 19 | 18 11 | jca | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ∧ 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) ) |
| 20 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 21 | fveq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 22 | 20 21 | oveq12d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 23 | 22 | eqeq1d | ⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) |
| 24 | 23 | bibi2d | ⊢ ( 𝑓 = 𝐹 → ( ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ↔ ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) ) |
| 25 | 24 | 2ralbidv | ⊢ ( 𝑓 = 𝐹 → ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ↔ ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) ) |
| 26 | f1oeq1 | ⊢ ( 𝑓 = 𝐹 → ( 𝑓 : 𝑅 –1-1-onto→ 𝑆 ↔ 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) ) | |
| 27 | 25 26 | anbi12d | ⊢ ( 𝑓 = 𝐹 → ( ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ↔ ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ∧ 𝐹 : 𝑅 –1-1-onto→ 𝑆 ) ) ) |
| 28 | 17 19 27 | spcedv | ⊢ ( 𝜑 → ∃ 𝑓 ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) |
| 29 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 30 | 9 | thinccd | ⊢ ( 𝜑 → 𝑋 ∈ Cat ) |
| 31 | 7 30 | elind | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝑈 ∩ Cat ) ) |
| 32 | 1 29 6 | catcbas | ⊢ ( 𝜑 → ( Base ‘ 𝐶 ) = ( 𝑈 ∩ Cat ) ) |
| 33 | 31 32 | eleqtrrd | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
| 34 | 10 | thinccd | ⊢ ( 𝜑 → 𝑌 ∈ Cat ) |
| 35 | 8 34 | elind | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝑈 ∩ Cat ) ) |
| 36 | 35 32 | eleqtrrd | ⊢ ( 𝜑 → 𝑌 ∈ ( Base ‘ 𝐶 ) ) |
| 37 | 1 29 2 3 4 5 6 33 36 9 10 | thincciso | ⊢ ( 𝜑 → ( 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ↔ ∃ 𝑓 ( ∀ 𝑥 ∈ 𝑅 ∀ 𝑦 ∈ 𝑅 ( ( 𝑥 𝐻 𝑦 ) = ∅ ↔ ( ( 𝑓 ‘ 𝑥 ) 𝐽 ( 𝑓 ‘ 𝑦 ) ) = ∅ ) ∧ 𝑓 : 𝑅 –1-1-onto→ 𝑆 ) ) ) |
| 38 | 28 37 | mpbird | ⊢ ( 𝜑 → 𝑋 ( ≃𝑐 ‘ 𝐶 ) 𝑌 ) |