This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor to a thin category is full iff empty hom-sets are mapped to empty hom-sets. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fullthinc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| fullthinc.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| fullthinc.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| fullthinc.d | ⊢ ( 𝜑 → 𝐷 ∈ ThinCat ) | ||
| fullthinc.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | ||
| Assertion | fullthinc | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fullthinc.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | fullthinc.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 3 | fullthinc.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | fullthinc.d | ⊢ ( 𝜑 → 𝐷 ∈ ThinCat ) | |
| 5 | fullthinc.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 6 | 1 2 3 | isfull2 | ⊢ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 7 | foeq2 | ⊢ ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ∅ –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 8 | fo00 | ⊢ ( ( 𝑥 𝐺 𝑦 ) : ∅ –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝑥 𝐺 𝑦 ) = ∅ ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) | |
| 9 | 8 | simprbi | ⊢ ( ( 𝑥 𝐺 𝑦 ) : ∅ –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) |
| 10 | 7 9 | biimtrdi | ⊢ ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) |
| 11 | 10 | com12 | ⊢ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) → ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) |
| 12 | 11 | 2ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) |
| 13 | 6 12 | simplbiim | ⊢ ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) |
| 14 | 13 | adantl | ⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) |
| 15 | simplr | ⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 16 | imor | ⊢ ( ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ↔ ( ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ∨ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) | |
| 17 | simplr | ⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 18 | simprl | ⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 19 | simprr | ⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 20 | 1 3 2 17 18 19 | funcf2 | ⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 21 | 20 | adantr | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 22 | simpr | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) | |
| 23 | 22 | neqned | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) |
| 24 | fdomne0 | ⊢ ( ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) → ( ( 𝑥 𝐺 𝑦 ) ≠ ∅ ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ ) ) | |
| 25 | 21 23 24 | syl2anc | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( ( 𝑥 𝐺 𝑦 ) ≠ ∅ ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ ) ) |
| 26 | 25 | simprd | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ ) |
| 27 | simplll | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → 𝐷 ∈ ThinCat ) | |
| 28 | eqid | ⊢ ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) | |
| 29 | 17 | adantr | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 30 | 1 28 29 | funcf1 | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝐷 ) ) |
| 31 | 18 | adantr | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → 𝑥 ∈ 𝐵 ) |
| 32 | 30 31 | ffvelcdmd | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝐷 ) ) |
| 33 | 19 | adantr | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → 𝑦 ∈ 𝐵 ) |
| 34 | 30 33 | ffvelcdmd | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐷 ) ) |
| 35 | eqidd | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( Base ‘ 𝐷 ) = ( Base ‘ 𝐷 ) ) | |
| 36 | 2 | a1i | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → 𝐽 = ( Hom ‘ 𝐷 ) ) |
| 37 | 27 32 34 35 36 | thincn0eu | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ≠ ∅ ↔ ∃! 𝑓 𝑓 ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 38 | 26 37 | mpbid | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ∃! 𝑓 𝑓 ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 39 | eusn | ⊢ ( ∃! 𝑓 𝑓 ∈ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ∃ 𝑓 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } ) | |
| 40 | 38 39 | sylib | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ∃ 𝑓 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } ) |
| 41 | 25 | simpld | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) |
| 42 | foconst | ⊢ ( ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ { 𝑓 } ∧ ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ { 𝑓 } ) | |
| 43 | feq3 | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ { 𝑓 } ) ) | |
| 44 | 43 | anbi1d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } → ( ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) ↔ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ { 𝑓 } ∧ ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) ) ) |
| 45 | foeq3 | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ { 𝑓 } ) ) | |
| 46 | 44 45 | imbi12d | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } → ( ( ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ↔ ( ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ { 𝑓 } ∧ ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ { 𝑓 } ) ) ) |
| 47 | 42 46 | mpbiri | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } → ( ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 48 | 47 | exlimiv | ⊢ ( ∃ 𝑓 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } → ( ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 49 | 48 | imp | ⊢ ( ( ∃ 𝑓 ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = { 𝑓 } ∧ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ∧ ( 𝑥 𝐺 𝑦 ) ≠ ∅ ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 50 | 40 21 41 49 | syl12anc | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 51 | 20 | adantr | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 52 | feq3 | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ∅ ) ) | |
| 53 | 52 | adantl | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ↔ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ∅ ) ) |
| 54 | 51 53 | mpbid | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ∅ ) |
| 55 | f00 | ⊢ ( ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) ⟶ ∅ ↔ ( ( 𝑥 𝐺 𝑦 ) = ∅ ∧ ( 𝑥 𝐻 𝑦 ) = ∅ ) ) | |
| 56 | 54 55 | sylib | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( ( 𝑥 𝐺 𝑦 ) = ∅ ∧ ( 𝑥 𝐻 𝑦 ) = ∅ ) ) |
| 57 | 56 | simprd | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( 𝑥 𝐻 𝑦 ) = ∅ ) |
| 58 | 56 | simpld | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) = ∅ ) |
| 59 | simpr | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) | |
| 60 | 8 | biimpri | ⊢ ( ( ( 𝑥 𝐺 𝑦 ) = ∅ ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) : ∅ –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 61 | 60 7 | imbitrrid | ⊢ ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( ( 𝑥 𝐺 𝑦 ) = ∅ ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 62 | 61 | imp | ⊢ ( ( ( 𝑥 𝐻 𝑦 ) = ∅ ∧ ( ( 𝑥 𝐺 𝑦 ) = ∅ ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 63 | 57 58 59 62 | syl12anc | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 64 | 50 63 | jaodan | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ¬ ( 𝑥 𝐻 𝑦 ) = ∅ ∨ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 65 | 16 64 | sylan2b | ⊢ ( ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) ∧ ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 66 | 65 | ex | ⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 67 | 66 | ralimdvva | ⊢ ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 68 | 67 | imp | ⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 𝐺 𝑦 ) : ( 𝑥 𝐻 𝑦 ) –onto→ ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) |
| 69 | 15 68 6 | sylanbrc | ⊢ ( ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) → 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ) |
| 70 | 14 69 | impbida | ⊢ ( ( 𝐷 ∈ ThinCat ∧ 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) ) |
| 71 | 4 5 70 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ( 𝐶 Full 𝐷 ) 𝐺 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 𝐻 𝑦 ) = ∅ → ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) = ∅ ) ) ) |