This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor to a thin category is determined entirely by the object part. The hypothesis "functhinc.1" is related to a monotone function if preorders induced by the categories are considered ( catprs2 ), and can be obtained from funcf2 , f002 , and ralrimivva . (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | functhinc.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| functhinc.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | ||
| functhinc.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | ||
| functhinc.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | ||
| functhinc.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| functhinc.e | ⊢ ( 𝜑 → 𝐸 ∈ ThinCat ) | ||
| functhinc.f | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) | ||
| functhinc.k | ⊢ 𝐾 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) | ||
| functhinc.1 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) | ||
| Assertion | functhinc | ⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 𝐺 = 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | functhinc.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | functhinc.c | ⊢ 𝐶 = ( Base ‘ 𝐸 ) | |
| 3 | functhinc.h | ⊢ 𝐻 = ( Hom ‘ 𝐷 ) | |
| 4 | functhinc.j | ⊢ 𝐽 = ( Hom ‘ 𝐸 ) | |
| 5 | functhinc.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 6 | functhinc.e | ⊢ ( 𝜑 → 𝐸 ∈ ThinCat ) | |
| 7 | functhinc.f | ⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝐶 ) | |
| 8 | functhinc.k | ⊢ 𝐾 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( ( 𝑥 𝐻 𝑦 ) × ( ( 𝐹 ‘ 𝑥 ) 𝐽 ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 9 | functhinc.1 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) | |
| 10 | eqid | ⊢ ( Id ‘ 𝐷 ) = ( Id ‘ 𝐷 ) | |
| 11 | eqid | ⊢ ( Id ‘ 𝐸 ) = ( Id ‘ 𝐸 ) | |
| 12 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 13 | eqid | ⊢ ( comp ‘ 𝐸 ) = ( comp ‘ 𝐸 ) | |
| 14 | 6 | thinccd | ⊢ ( 𝜑 → 𝐸 ∈ Cat ) |
| 15 | 1 2 3 4 10 11 12 13 5 14 | isfunc | ⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 ∈ X 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑐 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑐 ) ) ) ↑m ( 𝐻 ‘ 𝑐 ) ) ∧ ∀ 𝑎 ∈ 𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑎 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) ) ) ) |
| 16 | 3anass | ⊢ ( ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ 𝐺 ∈ X 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑐 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑐 ) ) ) ↑m ( 𝐻 ‘ 𝑐 ) ) ∧ ∀ 𝑎 ∈ 𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑎 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) ) ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ( 𝐺 ∈ X 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑐 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑐 ) ) ) ↑m ( 𝐻 ‘ 𝑐 ) ) ∧ ∀ 𝑎 ∈ 𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑎 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) ) ) ) | |
| 17 | 15 16 | bitrdi | ⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ( 𝐹 : 𝐵 ⟶ 𝐶 ∧ ( 𝐺 ∈ X 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑐 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑐 ) ) ) ↑m ( 𝐻 ‘ 𝑐 ) ) ∧ ∀ 𝑎 ∈ 𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑎 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) ) ) ) ) |
| 18 | 7 17 | mpbirand | ⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ( 𝐺 ∈ X 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑐 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑐 ) ) ) ↑m ( 𝐻 ‘ 𝑐 ) ) ∧ ∀ 𝑎 ∈ 𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑎 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) ) ) ) |
| 19 | funcf2lem | ⊢ ( 𝐺 ∈ X 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑐 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑐 ) ) ) ↑m ( 𝐻 ‘ 𝑐 ) ) ↔ ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ( 𝑣 𝐺 𝑢 ) : ( 𝑣 𝐻 𝑢 ) ⟶ ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑢 ) ) ) ) | |
| 20 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) → 𝑣 ∈ 𝐵 ) | |
| 21 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) → 𝑢 ∈ 𝐵 ) | |
| 22 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( ( ( 𝐹 ‘ 𝑧 ) 𝐽 ( 𝐹 ‘ 𝑤 ) ) = ∅ → ( 𝑧 𝐻 𝑤 ) = ∅ ) ) |
| 23 | 20 21 22 | functhinclem2 | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐵 ∧ 𝑢 ∈ 𝐵 ) ) → ( ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑢 ) ) = ∅ → ( 𝑣 𝐻 𝑢 ) = ∅ ) ) |
| 24 | 1 2 3 4 6 7 8 23 | functhinclem1 | ⊢ ( 𝜑 → ( ( 𝐺 ∈ V ∧ 𝐺 Fn ( 𝐵 × 𝐵 ) ∧ ∀ 𝑣 ∈ 𝐵 ∀ 𝑢 ∈ 𝐵 ( 𝑣 𝐺 𝑢 ) : ( 𝑣 𝐻 𝑢 ) ⟶ ( ( 𝐹 ‘ 𝑣 ) 𝐽 ( 𝐹 ‘ 𝑢 ) ) ) ↔ 𝐺 = 𝐾 ) ) |
| 25 | 19 24 | bitrid | ⊢ ( 𝜑 → ( 𝐺 ∈ X 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑐 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑐 ) ) ) ↑m ( 𝐻 ‘ 𝑐 ) ) ↔ 𝐺 = 𝐾 ) ) |
| 26 | 25 | anbi1d | ⊢ ( 𝜑 → ( ( 𝐺 ∈ X 𝑐 ∈ ( 𝐵 × 𝐵 ) ( ( ( 𝐹 ‘ ( 1st ‘ 𝑐 ) ) 𝐽 ( 𝐹 ‘ ( 2nd ‘ 𝑐 ) ) ) ↑m ( 𝐻 ‘ 𝑐 ) ) ∧ ∀ 𝑎 ∈ 𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑎 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) ) ↔ ( 𝐺 = 𝐾 ∧ ∀ 𝑎 ∈ 𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑎 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) ) ) ) |
| 27 | 18 26 | bitrd | ⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ ( 𝐺 = 𝐾 ∧ ∀ 𝑎 ∈ 𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑎 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) ) ) ) |
| 28 | 1 2 3 4 5 6 7 8 9 10 11 12 13 | functhinclem4 | ⊢ ( ( 𝜑 ∧ 𝐺 = 𝐾 ) → ∀ 𝑎 ∈ 𝐵 ( ( ( 𝑎 𝐺 𝑎 ) ‘ ( ( Id ‘ 𝐷 ) ‘ 𝑎 ) ) = ( ( Id ‘ 𝐸 ) ‘ ( 𝐹 ‘ 𝑎 ) ) ∧ ∀ 𝑏 ∈ 𝐵 ∀ 𝑐 ∈ 𝐵 ∀ 𝑓 ∈ ( 𝑎 𝐻 𝑏 ) ∀ 𝑔 ∈ ( 𝑏 𝐻 𝑐 ) ( ( 𝑎 𝐺 𝑐 ) ‘ ( 𝑔 ( 〈 𝑎 , 𝑏 〉 ( comp ‘ 𝐷 ) 𝑐 ) 𝑓 ) ) = ( ( ( 𝑏 𝐺 𝑐 ) ‘ 𝑔 ) ( 〈 ( 𝐹 ‘ 𝑎 ) , ( 𝐹 ‘ 𝑏 ) 〉 ( comp ‘ 𝐸 ) ( 𝐹 ‘ 𝑐 ) ) ( ( 𝑎 𝐺 𝑏 ) ‘ 𝑓 ) ) ) ) |
| 29 | 27 28 | mpbiran3d | ⊢ ( 𝜑 → ( 𝐹 ( 𝐷 Func 𝐸 ) 𝐺 ↔ 𝐺 = 𝐾 ) ) |