This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A functor from a thin category is faithful. (Contributed by Zhi Wang, 1-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | thincfth.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| thincfth.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | ||
| Assertion | thincfth | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | thincfth.c | ⊢ ( 𝜑 → 𝐶 ∈ ThinCat ) | |
| 2 | thincfth.f | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) | |
| 3 | 1 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ ThinCat ) |
| 4 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 5 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 7 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 8 | 3 4 5 6 7 | thincmo | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 9 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 10 | 2 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ) |
| 11 | 6 7 9 10 4 5 | funcf2 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 12 | f1mo | ⊢ ( ( ∃* 𝑓 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ∧ ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ⟶ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) | |
| 13 | 8 11 12 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 14 | 13 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 15 | 6 7 9 | isfth2 | ⊢ ( 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ↔ ( 𝐹 ( 𝐶 Func 𝐷 ) 𝐺 ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 𝐺 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) –1-1→ ( ( 𝐹 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 16 | 2 14 15 | sylanbrc | ⊢ ( 𝜑 → 𝐹 ( 𝐶 Faith 𝐷 ) 𝐺 ) |