This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: To invert a permutation represented as a sequence of transpositions, reverse the sequence. (Contributed by Stefan O'Rear, 27-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | symgtrinv.t | |- T = ran ( pmTrsp ` D ) |
|
| symgtrinv.g | |- G = ( SymGrp ` D ) |
||
| symgtrinv.i | |- I = ( invg ` G ) |
||
| Assertion | symgtrinv | |- ( ( D e. V /\ W e. Word T ) -> ( I ` ( G gsum W ) ) = ( G gsum ( reverse ` W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgtrinv.t | |- T = ran ( pmTrsp ` D ) |
|
| 2 | symgtrinv.g | |- G = ( SymGrp ` D ) |
|
| 3 | symgtrinv.i | |- I = ( invg ` G ) |
|
| 4 | 2 | symggrp | |- ( D e. V -> G e. Grp ) |
| 5 | eqid | |- ( oppG ` G ) = ( oppG ` G ) |
|
| 6 | 5 3 | invoppggim | |- ( G e. Grp -> I e. ( G GrpIso ( oppG ` G ) ) ) |
| 7 | gimghm | |- ( I e. ( G GrpIso ( oppG ` G ) ) -> I e. ( G GrpHom ( oppG ` G ) ) ) |
|
| 8 | ghmmhm | |- ( I e. ( G GrpHom ( oppG ` G ) ) -> I e. ( G MndHom ( oppG ` G ) ) ) |
|
| 9 | 4 6 7 8 | 4syl | |- ( D e. V -> I e. ( G MndHom ( oppG ` G ) ) ) |
| 10 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 11 | 1 2 10 | symgtrf | |- T C_ ( Base ` G ) |
| 12 | sswrd | |- ( T C_ ( Base ` G ) -> Word T C_ Word ( Base ` G ) ) |
|
| 13 | 11 12 | ax-mp | |- Word T C_ Word ( Base ` G ) |
| 14 | 13 | sseli | |- ( W e. Word T -> W e. Word ( Base ` G ) ) |
| 15 | 10 | gsumwmhm | |- ( ( I e. ( G MndHom ( oppG ` G ) ) /\ W e. Word ( Base ` G ) ) -> ( I ` ( G gsum W ) ) = ( ( oppG ` G ) gsum ( I o. W ) ) ) |
| 16 | 9 14 15 | syl2an | |- ( ( D e. V /\ W e. Word T ) -> ( I ` ( G gsum W ) ) = ( ( oppG ` G ) gsum ( I o. W ) ) ) |
| 17 | 10 3 | grpinvf | |- ( G e. Grp -> I : ( Base ` G ) --> ( Base ` G ) ) |
| 18 | 4 17 | syl | |- ( D e. V -> I : ( Base ` G ) --> ( Base ` G ) ) |
| 19 | wrdf | |- ( W e. Word T -> W : ( 0 ..^ ( # ` W ) ) --> T ) |
|
| 20 | 19 | adantl | |- ( ( D e. V /\ W e. Word T ) -> W : ( 0 ..^ ( # ` W ) ) --> T ) |
| 21 | fss | |- ( ( W : ( 0 ..^ ( # ` W ) ) --> T /\ T C_ ( Base ` G ) ) -> W : ( 0 ..^ ( # ` W ) ) --> ( Base ` G ) ) |
|
| 22 | 20 11 21 | sylancl | |- ( ( D e. V /\ W e. Word T ) -> W : ( 0 ..^ ( # ` W ) ) --> ( Base ` G ) ) |
| 23 | fco | |- ( ( I : ( Base ` G ) --> ( Base ` G ) /\ W : ( 0 ..^ ( # ` W ) ) --> ( Base ` G ) ) -> ( I o. W ) : ( 0 ..^ ( # ` W ) ) --> ( Base ` G ) ) |
|
| 24 | 18 22 23 | syl2an2r | |- ( ( D e. V /\ W e. Word T ) -> ( I o. W ) : ( 0 ..^ ( # ` W ) ) --> ( Base ` G ) ) |
| 25 | 24 | ffnd | |- ( ( D e. V /\ W e. Word T ) -> ( I o. W ) Fn ( 0 ..^ ( # ` W ) ) ) |
| 26 | 20 | ffnd | |- ( ( D e. V /\ W e. Word T ) -> W Fn ( 0 ..^ ( # ` W ) ) ) |
| 27 | fvco2 | |- ( ( W Fn ( 0 ..^ ( # ` W ) ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I o. W ) ` x ) = ( I ` ( W ` x ) ) ) |
|
| 28 | 26 27 | sylan | |- ( ( ( D e. V /\ W e. Word T ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I o. W ) ` x ) = ( I ` ( W ` x ) ) ) |
| 29 | 20 | ffvelcdmda | |- ( ( ( D e. V /\ W e. Word T ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` x ) e. T ) |
| 30 | 11 29 | sselid | |- ( ( ( D e. V /\ W e. Word T ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( W ` x ) e. ( Base ` G ) ) |
| 31 | 2 10 3 | symginv | |- ( ( W ` x ) e. ( Base ` G ) -> ( I ` ( W ` x ) ) = `' ( W ` x ) ) |
| 32 | 30 31 | syl | |- ( ( ( D e. V /\ W e. Word T ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( I ` ( W ` x ) ) = `' ( W ` x ) ) |
| 33 | eqid | |- ( pmTrsp ` D ) = ( pmTrsp ` D ) |
|
| 34 | 33 1 | pmtrfcnv | |- ( ( W ` x ) e. T -> `' ( W ` x ) = ( W ` x ) ) |
| 35 | 29 34 | syl | |- ( ( ( D e. V /\ W e. Word T ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> `' ( W ` x ) = ( W ` x ) ) |
| 36 | 28 32 35 | 3eqtrd | |- ( ( ( D e. V /\ W e. Word T ) /\ x e. ( 0 ..^ ( # ` W ) ) ) -> ( ( I o. W ) ` x ) = ( W ` x ) ) |
| 37 | 25 26 36 | eqfnfvd | |- ( ( D e. V /\ W e. Word T ) -> ( I o. W ) = W ) |
| 38 | 37 | oveq2d | |- ( ( D e. V /\ W e. Word T ) -> ( ( oppG ` G ) gsum ( I o. W ) ) = ( ( oppG ` G ) gsum W ) ) |
| 39 | 4 | grpmndd | |- ( D e. V -> G e. Mnd ) |
| 40 | 10 5 | gsumwrev | |- ( ( G e. Mnd /\ W e. Word ( Base ` G ) ) -> ( ( oppG ` G ) gsum W ) = ( G gsum ( reverse ` W ) ) ) |
| 41 | 39 14 40 | syl2an | |- ( ( D e. V /\ W e. Word T ) -> ( ( oppG ` G ) gsum W ) = ( G gsum ( reverse ` W ) ) ) |
| 42 | 16 38 41 | 3eqtrd | |- ( ( D e. V /\ W e. Word T ) -> ( I ` ( G gsum W ) ) = ( G gsum ( reverse ` W ) ) ) |