This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum in an opposite monoid is the regular sum of a reversed word. (Contributed by Stefan O'Rear, 27-Aug-2015) (Proof shortened by Mario Carneiro, 28-Feb-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumwrev.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| gsumwrev.o | ⊢ 𝑂 = ( oppg ‘ 𝑀 ) | ||
| Assertion | gsumwrev | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ) → ( 𝑂 Σg 𝑊 ) = ( 𝑀 Σg ( reverse ‘ 𝑊 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumwrev.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | gsumwrev.o | ⊢ 𝑂 = ( oppg ‘ 𝑀 ) | |
| 3 | oveq2 | ⊢ ( 𝑥 = ∅ → ( 𝑂 Σg 𝑥 ) = ( 𝑂 Σg ∅ ) ) | |
| 4 | fveq2 | ⊢ ( 𝑥 = ∅ → ( reverse ‘ 𝑥 ) = ( reverse ‘ ∅ ) ) | |
| 5 | rev0 | ⊢ ( reverse ‘ ∅ ) = ∅ | |
| 6 | 4 5 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( reverse ‘ 𝑥 ) = ∅ ) |
| 7 | 6 | oveq2d | ⊢ ( 𝑥 = ∅ → ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) = ( 𝑀 Σg ∅ ) ) |
| 8 | 3 7 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( 𝑂 Σg 𝑥 ) = ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) ↔ ( 𝑂 Σg ∅ ) = ( 𝑀 Σg ∅ ) ) ) |
| 9 | 8 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( 𝑀 ∈ Mnd → ( 𝑂 Σg 𝑥 ) = ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) ) ↔ ( 𝑀 ∈ Mnd → ( 𝑂 Σg ∅ ) = ( 𝑀 Σg ∅ ) ) ) ) |
| 10 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑂 Σg 𝑥 ) = ( 𝑂 Σg 𝑦 ) ) | |
| 11 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( reverse ‘ 𝑥 ) = ( reverse ‘ 𝑦 ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) = ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) |
| 13 | 10 12 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑂 Σg 𝑥 ) = ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) ↔ ( 𝑂 Σg 𝑦 ) = ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) ) |
| 14 | 13 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑀 ∈ Mnd → ( 𝑂 Σg 𝑥 ) = ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) ) ↔ ( 𝑀 ∈ Mnd → ( 𝑂 Σg 𝑦 ) = ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) ) ) |
| 15 | oveq2 | ⊢ ( 𝑥 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( 𝑂 Σg 𝑥 ) = ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) | |
| 16 | fveq2 | ⊢ ( 𝑥 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( reverse ‘ 𝑥 ) = ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) | |
| 17 | 16 | oveq2d | ⊢ ( 𝑥 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) = ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) |
| 18 | 15 17 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( 𝑂 Σg 𝑥 ) = ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) ↔ ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) ) |
| 19 | 18 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 ++ 〈“ 𝑧 ”〉 ) → ( ( 𝑀 ∈ Mnd → ( 𝑂 Σg 𝑥 ) = ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) ) ↔ ( 𝑀 ∈ Mnd → ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) ) ) |
| 20 | oveq2 | ⊢ ( 𝑥 = 𝑊 → ( 𝑂 Σg 𝑥 ) = ( 𝑂 Σg 𝑊 ) ) | |
| 21 | fveq2 | ⊢ ( 𝑥 = 𝑊 → ( reverse ‘ 𝑥 ) = ( reverse ‘ 𝑊 ) ) | |
| 22 | 21 | oveq2d | ⊢ ( 𝑥 = 𝑊 → ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) = ( 𝑀 Σg ( reverse ‘ 𝑊 ) ) ) |
| 23 | 20 22 | eqeq12d | ⊢ ( 𝑥 = 𝑊 → ( ( 𝑂 Σg 𝑥 ) = ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) ↔ ( 𝑂 Σg 𝑊 ) = ( 𝑀 Σg ( reverse ‘ 𝑊 ) ) ) ) |
| 24 | 23 | imbi2d | ⊢ ( 𝑥 = 𝑊 → ( ( 𝑀 ∈ Mnd → ( 𝑂 Σg 𝑥 ) = ( 𝑀 Σg ( reverse ‘ 𝑥 ) ) ) ↔ ( 𝑀 ∈ Mnd → ( 𝑂 Σg 𝑊 ) = ( 𝑀 Σg ( reverse ‘ 𝑊 ) ) ) ) ) |
| 25 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 26 | 2 25 | oppgid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑂 ) |
| 27 | 26 | gsum0 | ⊢ ( 𝑂 Σg ∅ ) = ( 0g ‘ 𝑀 ) |
| 28 | 25 | gsum0 | ⊢ ( 𝑀 Σg ∅ ) = ( 0g ‘ 𝑀 ) |
| 29 | 27 28 | eqtr4i | ⊢ ( 𝑂 Σg ∅ ) = ( 𝑀 Σg ∅ ) |
| 30 | 29 | a1i | ⊢ ( 𝑀 ∈ Mnd → ( 𝑂 Σg ∅ ) = ( 𝑀 Σg ∅ ) ) |
| 31 | oveq2 | ⊢ ( ( 𝑂 Σg 𝑦 ) = ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) → ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑂 Σg 𝑦 ) ) = ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) ) | |
| 32 | 2 | oppgmnd | ⊢ ( 𝑀 ∈ Mnd → 𝑂 ∈ Mnd ) |
| 33 | 32 | adantr | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑂 ∈ Mnd ) |
| 34 | simprl | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ Word 𝐵 ) | |
| 35 | simprr | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) | |
| 36 | 35 | s1cld | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 〈“ 𝑧 ”〉 ∈ Word 𝐵 ) |
| 37 | 2 1 | oppgbas | ⊢ 𝐵 = ( Base ‘ 𝑂 ) |
| 38 | eqid | ⊢ ( +g ‘ 𝑂 ) = ( +g ‘ 𝑂 ) | |
| 39 | 37 38 | gsumccat | ⊢ ( ( 𝑂 ∈ Mnd ∧ 𝑦 ∈ Word 𝐵 ∧ 〈“ 𝑧 ”〉 ∈ Word 𝐵 ) → ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( ( 𝑂 Σg 𝑦 ) ( +g ‘ 𝑂 ) ( 𝑂 Σg 〈“ 𝑧 ”〉 ) ) ) |
| 40 | 33 34 36 39 | syl3anc | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( ( 𝑂 Σg 𝑦 ) ( +g ‘ 𝑂 ) ( 𝑂 Σg 〈“ 𝑧 ”〉 ) ) ) |
| 41 | 37 | gsumws1 | ⊢ ( 𝑧 ∈ 𝐵 → ( 𝑂 Σg 〈“ 𝑧 ”〉 ) = 𝑧 ) |
| 42 | 41 | ad2antll | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑂 Σg 〈“ 𝑧 ”〉 ) = 𝑧 ) |
| 43 | 42 | oveq2d | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑂 Σg 𝑦 ) ( +g ‘ 𝑂 ) ( 𝑂 Σg 〈“ 𝑧 ”〉 ) ) = ( ( 𝑂 Σg 𝑦 ) ( +g ‘ 𝑂 ) 𝑧 ) ) |
| 44 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 45 | 44 2 38 | oppgplus | ⊢ ( ( 𝑂 Σg 𝑦 ) ( +g ‘ 𝑂 ) 𝑧 ) = ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑂 Σg 𝑦 ) ) |
| 46 | 43 45 | eqtrdi | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑂 Σg 𝑦 ) ( +g ‘ 𝑂 ) ( 𝑂 Σg 〈“ 𝑧 ”〉 ) ) = ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑂 Σg 𝑦 ) ) ) |
| 47 | 40 46 | eqtrd | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑂 Σg 𝑦 ) ) ) |
| 48 | revccat | ⊢ ( ( 𝑦 ∈ Word 𝐵 ∧ 〈“ 𝑧 ”〉 ∈ Word 𝐵 ) → ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( ( reverse ‘ 〈“ 𝑧 ”〉 ) ++ ( reverse ‘ 𝑦 ) ) ) | |
| 49 | 34 36 48 | syl2anc | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( ( reverse ‘ 〈“ 𝑧 ”〉 ) ++ ( reverse ‘ 𝑦 ) ) ) |
| 50 | revs1 | ⊢ ( reverse ‘ 〈“ 𝑧 ”〉 ) = 〈“ 𝑧 ”〉 | |
| 51 | 50 | oveq1i | ⊢ ( ( reverse ‘ 〈“ 𝑧 ”〉 ) ++ ( reverse ‘ 𝑦 ) ) = ( 〈“ 𝑧 ”〉 ++ ( reverse ‘ 𝑦 ) ) |
| 52 | 49 51 | eqtrdi | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( 〈“ 𝑧 ”〉 ++ ( reverse ‘ 𝑦 ) ) ) |
| 53 | 52 | oveq2d | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) = ( 𝑀 Σg ( 〈“ 𝑧 ”〉 ++ ( reverse ‘ 𝑦 ) ) ) ) |
| 54 | simpl | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑀 ∈ Mnd ) | |
| 55 | revcl | ⊢ ( 𝑦 ∈ Word 𝐵 → ( reverse ‘ 𝑦 ) ∈ Word 𝐵 ) | |
| 56 | 55 | ad2antrl | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( reverse ‘ 𝑦 ) ∈ Word 𝐵 ) |
| 57 | 1 44 | gsumccat | ⊢ ( ( 𝑀 ∈ Mnd ∧ 〈“ 𝑧 ”〉 ∈ Word 𝐵 ∧ ( reverse ‘ 𝑦 ) ∈ Word 𝐵 ) → ( 𝑀 Σg ( 〈“ 𝑧 ”〉 ++ ( reverse ‘ 𝑦 ) ) ) = ( ( 𝑀 Σg 〈“ 𝑧 ”〉 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) ) |
| 58 | 54 36 56 57 | syl3anc | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑀 Σg ( 〈“ 𝑧 ”〉 ++ ( reverse ‘ 𝑦 ) ) ) = ( ( 𝑀 Σg 〈“ 𝑧 ”〉 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) ) |
| 59 | 1 | gsumws1 | ⊢ ( 𝑧 ∈ 𝐵 → ( 𝑀 Σg 〈“ 𝑧 ”〉 ) = 𝑧 ) |
| 60 | 59 | ad2antll | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑀 Σg 〈“ 𝑧 ”〉 ) = 𝑧 ) |
| 61 | 60 | oveq1d | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑀 Σg 〈“ 𝑧 ”〉 ) ( +g ‘ 𝑀 ) ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) = ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) ) |
| 62 | 53 58 61 | 3eqtrd | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) = ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) ) |
| 63 | 47 62 | eqeq12d | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ↔ ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑂 Σg 𝑦 ) ) = ( 𝑧 ( +g ‘ 𝑀 ) ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) ) ) |
| 64 | 31 63 | imbitrrid | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑂 Σg 𝑦 ) = ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) → ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) ) |
| 65 | 64 | expcom | ⊢ ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑀 ∈ Mnd → ( ( 𝑂 Σg 𝑦 ) = ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) → ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) ) ) |
| 66 | 65 | a2d | ⊢ ( ( 𝑦 ∈ Word 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝑀 ∈ Mnd → ( 𝑂 Σg 𝑦 ) = ( 𝑀 Σg ( reverse ‘ 𝑦 ) ) ) → ( 𝑀 ∈ Mnd → ( 𝑂 Σg ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) = ( 𝑀 Σg ( reverse ‘ ( 𝑦 ++ 〈“ 𝑧 ”〉 ) ) ) ) ) ) |
| 67 | 9 14 19 24 30 66 | wrdind | ⊢ ( 𝑊 ∈ Word 𝐵 → ( 𝑀 ∈ Mnd → ( 𝑂 Σg 𝑊 ) = ( 𝑀 Σg ( reverse ‘ 𝑊 ) ) ) ) |
| 68 | 67 | impcom | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵 ) → ( 𝑂 Σg 𝑊 ) = ( 𝑀 Σg ( reverse ‘ 𝑊 ) ) ) |