This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left multiplication by a group element is a bijection on any group. (Contributed by Mario Carneiro, 17-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grplmulf1o.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grplmulf1o.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| grplmulf1o.n | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 + 𝑥 ) ) | ||
| Assertion | grplmulf1o | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplmulf1o.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grplmulf1o.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | grplmulf1o.n | ⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ ( 𝑋 + 𝑥 ) ) | |
| 4 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 + 𝑥 ) ∈ 𝐵 ) |
| 5 | 4 | 3expa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑋 + 𝑥 ) ∈ 𝐵 ) |
| 6 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 7 | 1 6 | grpinvcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 8 | 1 2 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ∈ 𝐵 ) |
| 9 | 8 | 3expa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ∈ 𝐵 ) |
| 10 | 7 9 | syldanl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑦 ∈ 𝐵 ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ∈ 𝐵 ) |
| 11 | eqcom | ⊢ ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) = 𝑥 ) | |
| 12 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝐺 ∈ Grp ) | |
| 13 | 10 | adantrl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ∈ 𝐵 ) |
| 14 | simprl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) | |
| 15 | simplr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑋 ∈ 𝐵 ) | |
| 16 | 1 2 | grplcan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ) = ( 𝑋 + 𝑥 ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) = 𝑥 ) ) |
| 17 | 12 13 14 15 16 | syl13anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ) = ( 𝑋 + 𝑥 ) ↔ ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) = 𝑥 ) ) |
| 18 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 19 | 1 2 18 6 | grprinv | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 20 | 19 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) = ( 0g ‘ 𝐺 ) ) |
| 21 | 20 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑦 ) = ( ( 0g ‘ 𝐺 ) + 𝑦 ) ) |
| 22 | 7 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 23 | simprr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 24 | 1 2 12 15 22 23 | grpassd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) ) + 𝑦 ) = ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ) ) |
| 25 | 1 2 18 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑦 ∈ 𝐵 ) → ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) |
| 26 | 25 | ad2ant2rl | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 0g ‘ 𝐺 ) + 𝑦 ) = 𝑦 ) |
| 27 | 21 24 26 | 3eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ) = 𝑦 ) |
| 28 | 27 | eqeq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑋 + ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ) = ( 𝑋 + 𝑥 ) ↔ 𝑦 = ( 𝑋 + 𝑥 ) ) ) |
| 29 | 17 28 | bitr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) = 𝑥 ↔ 𝑦 = ( 𝑋 + 𝑥 ) ) ) |
| 30 | 11 29 | bitrid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 = ( ( ( invg ‘ 𝐺 ) ‘ 𝑋 ) + 𝑦 ) ↔ 𝑦 = ( 𝑋 + 𝑥 ) ) ) |
| 31 | 3 5 10 30 | f1o2d | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐵 ) |