This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgugrp.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| subrgugrp.2 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | ||
| subrgugrp.3 | ⊢ 𝑉 = ( Unit ‘ 𝑆 ) | ||
| subrgugrp.4 | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) | ||
| Assertion | subrgugrp | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑉 ∈ ( SubGrp ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgugrp.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| 2 | subrgugrp.2 | ⊢ 𝑈 = ( Unit ‘ 𝑅 ) | |
| 3 | subrgugrp.3 | ⊢ 𝑉 = ( Unit ‘ 𝑆 ) | |
| 4 | subrgugrp.4 | ⊢ 𝐺 = ( ( mulGrp ‘ 𝑅 ) ↾s 𝑈 ) | |
| 5 | 1 2 3 | subrguss | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑉 ⊆ 𝑈 ) |
| 6 | 1 | subrgring | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 7 | eqid | ⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) | |
| 8 | 3 7 | 1unit | ⊢ ( 𝑆 ∈ Ring → ( 1r ‘ 𝑆 ) ∈ 𝑉 ) |
| 9 | ne0i | ⊢ ( ( 1r ‘ 𝑆 ) ∈ 𝑉 → 𝑉 ≠ ∅ ) | |
| 10 | 6 8 9 | 3syl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑉 ≠ ∅ ) |
| 11 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 12 | 1 11 | ressmulr | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 14 | 13 | oveqd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ) |
| 15 | eqid | ⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) | |
| 16 | 3 15 | unitmulcl | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ 𝑉 ) |
| 17 | 6 16 | syl3an1 | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑆 ) 𝑦 ) ∈ 𝑉 ) |
| 18 | 14 17 | eqeltrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑉 ) |
| 19 | 18 | 3expa | ⊢ ( ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑉 ) |
| 20 | 19 | ralrimiva | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ∀ 𝑦 ∈ 𝑉 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑉 ) |
| 21 | eqid | ⊢ ( invr ‘ 𝑅 ) = ( invr ‘ 𝑅 ) | |
| 22 | eqid | ⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) | |
| 23 | 1 21 3 22 | subrginv | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) = ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) |
| 24 | 3 22 | unitinvcl | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉 ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ 𝑉 ) |
| 25 | 6 24 | sylan | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ 𝑉 ) |
| 26 | 23 25 | eqeltrd | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑉 ) |
| 27 | 20 26 | jca | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ∀ 𝑦 ∈ 𝑉 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑉 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑉 ) ) |
| 28 | 27 | ralrimiva | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ∀ 𝑥 ∈ 𝑉 ( ∀ 𝑦 ∈ 𝑉 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑉 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑉 ) ) |
| 29 | subrgrcl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) | |
| 30 | 2 4 | unitgrp | ⊢ ( 𝑅 ∈ Ring → 𝐺 ∈ Grp ) |
| 31 | 2 4 | unitgrpbas | ⊢ 𝑈 = ( Base ‘ 𝐺 ) |
| 32 | 2 | fvexi | ⊢ 𝑈 ∈ V |
| 33 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 34 | 33 11 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ ( mulGrp ‘ 𝑅 ) ) |
| 35 | 4 34 | ressplusg | ⊢ ( 𝑈 ∈ V → ( .r ‘ 𝑅 ) = ( +g ‘ 𝐺 ) ) |
| 36 | 32 35 | ax-mp | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝐺 ) |
| 37 | 2 4 21 | invrfval | ⊢ ( invr ‘ 𝑅 ) = ( invg ‘ 𝐺 ) |
| 38 | 31 36 37 | issubg2 | ⊢ ( 𝐺 ∈ Grp → ( 𝑉 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑉 ⊆ 𝑈 ∧ 𝑉 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑉 ( ∀ 𝑦 ∈ 𝑉 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑉 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑉 ) ) ) ) |
| 39 | 29 30 38 | 3syl | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑉 ∈ ( SubGrp ‘ 𝐺 ) ↔ ( 𝑉 ⊆ 𝑈 ∧ 𝑉 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑉 ( ∀ 𝑦 ∈ 𝑉 ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝑉 ∧ ( ( invr ‘ 𝑅 ) ‘ 𝑥 ) ∈ 𝑉 ) ) ) ) |
| 40 | 5 10 28 39 | mpbir3and | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑉 ∈ ( SubGrp ‘ 𝐺 ) ) |