This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgugrp.1 | |- S = ( R |`s A ) |
|
| subrgugrp.2 | |- U = ( Unit ` R ) |
||
| subrgugrp.3 | |- V = ( Unit ` S ) |
||
| subrgugrp.4 | |- G = ( ( mulGrp ` R ) |`s U ) |
||
| Assertion | subrgugrp | |- ( A e. ( SubRing ` R ) -> V e. ( SubGrp ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgugrp.1 | |- S = ( R |`s A ) |
|
| 2 | subrgugrp.2 | |- U = ( Unit ` R ) |
|
| 3 | subrgugrp.3 | |- V = ( Unit ` S ) |
|
| 4 | subrgugrp.4 | |- G = ( ( mulGrp ` R ) |`s U ) |
|
| 5 | 1 2 3 | subrguss | |- ( A e. ( SubRing ` R ) -> V C_ U ) |
| 6 | 1 | subrgring | |- ( A e. ( SubRing ` R ) -> S e. Ring ) |
| 7 | eqid | |- ( 1r ` S ) = ( 1r ` S ) |
|
| 8 | 3 7 | 1unit | |- ( S e. Ring -> ( 1r ` S ) e. V ) |
| 9 | ne0i | |- ( ( 1r ` S ) e. V -> V =/= (/) ) |
|
| 10 | 6 8 9 | 3syl | |- ( A e. ( SubRing ` R ) -> V =/= (/) ) |
| 11 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 12 | 1 11 | ressmulr | |- ( A e. ( SubRing ` R ) -> ( .r ` R ) = ( .r ` S ) ) |
| 13 | 12 | 3ad2ant1 | |- ( ( A e. ( SubRing ` R ) /\ x e. V /\ y e. V ) -> ( .r ` R ) = ( .r ` S ) ) |
| 14 | 13 | oveqd | |- ( ( A e. ( SubRing ` R ) /\ x e. V /\ y e. V ) -> ( x ( .r ` R ) y ) = ( x ( .r ` S ) y ) ) |
| 15 | eqid | |- ( .r ` S ) = ( .r ` S ) |
|
| 16 | 3 15 | unitmulcl | |- ( ( S e. Ring /\ x e. V /\ y e. V ) -> ( x ( .r ` S ) y ) e. V ) |
| 17 | 6 16 | syl3an1 | |- ( ( A e. ( SubRing ` R ) /\ x e. V /\ y e. V ) -> ( x ( .r ` S ) y ) e. V ) |
| 18 | 14 17 | eqeltrd | |- ( ( A e. ( SubRing ` R ) /\ x e. V /\ y e. V ) -> ( x ( .r ` R ) y ) e. V ) |
| 19 | 18 | 3expa | |- ( ( ( A e. ( SubRing ` R ) /\ x e. V ) /\ y e. V ) -> ( x ( .r ` R ) y ) e. V ) |
| 20 | 19 | ralrimiva | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> A. y e. V ( x ( .r ` R ) y ) e. V ) |
| 21 | eqid | |- ( invr ` R ) = ( invr ` R ) |
|
| 22 | eqid | |- ( invr ` S ) = ( invr ` S ) |
|
| 23 | 1 21 3 22 | subrginv | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( ( invr ` R ) ` x ) = ( ( invr ` S ) ` x ) ) |
| 24 | 3 22 | unitinvcl | |- ( ( S e. Ring /\ x e. V ) -> ( ( invr ` S ) ` x ) e. V ) |
| 25 | 6 24 | sylan | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( ( invr ` S ) ` x ) e. V ) |
| 26 | 23 25 | eqeltrd | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( ( invr ` R ) ` x ) e. V ) |
| 27 | 20 26 | jca | |- ( ( A e. ( SubRing ` R ) /\ x e. V ) -> ( A. y e. V ( x ( .r ` R ) y ) e. V /\ ( ( invr ` R ) ` x ) e. V ) ) |
| 28 | 27 | ralrimiva | |- ( A e. ( SubRing ` R ) -> A. x e. V ( A. y e. V ( x ( .r ` R ) y ) e. V /\ ( ( invr ` R ) ` x ) e. V ) ) |
| 29 | subrgrcl | |- ( A e. ( SubRing ` R ) -> R e. Ring ) |
|
| 30 | 2 4 | unitgrp | |- ( R e. Ring -> G e. Grp ) |
| 31 | 2 4 | unitgrpbas | |- U = ( Base ` G ) |
| 32 | 2 | fvexi | |- U e. _V |
| 33 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 34 | 33 11 | mgpplusg | |- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 35 | 4 34 | ressplusg | |- ( U e. _V -> ( .r ` R ) = ( +g ` G ) ) |
| 36 | 32 35 | ax-mp | |- ( .r ` R ) = ( +g ` G ) |
| 37 | 2 4 21 | invrfval | |- ( invr ` R ) = ( invg ` G ) |
| 38 | 31 36 37 | issubg2 | |- ( G e. Grp -> ( V e. ( SubGrp ` G ) <-> ( V C_ U /\ V =/= (/) /\ A. x e. V ( A. y e. V ( x ( .r ` R ) y ) e. V /\ ( ( invr ` R ) ` x ) e. V ) ) ) ) |
| 39 | 29 30 38 | 3syl | |- ( A e. ( SubRing ` R ) -> ( V e. ( SubGrp ` G ) <-> ( V C_ U /\ V =/= (/) /\ A. x e. V ( A. y e. V ( x ( .r ` R ) y ) e. V /\ ( ( invr ` R ) ` x ) e. V ) ) ) ) |
| 40 | 5 10 28 39 | mpbir3and | |- ( A e. ( SubRing ` R ) -> V e. ( SubGrp ` G ) ) |