This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgascl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| subrgascl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| subrgascl.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| subrgascl.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) | ||
| subrgascl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| subrgascl.r | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| subrgasclcl.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | ||
| subrgasclcl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| subrgasclcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | ||
| Assertion | subrgasclcl | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ↔ 𝑋 ∈ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgascl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | subrgascl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 3 | subrgascl.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 4 | subrgascl.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) | |
| 5 | subrgascl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | subrgascl.r | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 7 | subrgasclcl.b | ⊢ 𝐵 = ( Base ‘ 𝑈 ) | |
| 8 | subrgasclcl.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 9 | subrgasclcl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐾 ) | |
| 10 | iftrue | ⊢ ( 𝑥 = ( 𝐼 × { 0 } ) → if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) = 𝑋 ) | |
| 11 | 10 | eleq1d | ⊢ ( 𝑥 = ( 𝐼 × { 0 } ) → ( if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐻 ) ↔ 𝑋 ∈ ( Base ‘ 𝐻 ) ) ) |
| 12 | eqid | ⊢ ( 𝐼 mPwSer 𝐻 ) = ( 𝐼 mPwSer 𝐻 ) | |
| 13 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 14 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 15 | eqid | ⊢ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) = ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) | |
| 16 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 17 | subrgrcl | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) | |
| 18 | 6 17 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 19 | 1 14 16 8 2 5 18 9 | mplascl | ⊢ ( 𝜑 → ( 𝐴 ‘ 𝑋 ) = ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝐴 ‘ 𝑋 ) = ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ) ) |
| 21 | 3 | subrgring | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐻 ∈ Ring ) |
| 22 | 6 21 | syl | ⊢ ( 𝜑 → 𝐻 ∈ Ring ) |
| 23 | 12 4 7 5 22 | mplsubrg | ⊢ ( 𝜑 → 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
| 24 | 15 | subrgss | ⊢ ( 𝐵 ∈ ( SubRing ‘ ( 𝐼 mPwSer 𝐻 ) ) → 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
| 25 | 23 24 | syl | ⊢ ( 𝜑 → 𝐵 ⊆ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
| 26 | 25 | sselda | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝐴 ‘ 𝑋 ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
| 27 | 20 26 | eqeltrrd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ) ∈ ( Base ‘ ( 𝐼 mPwSer 𝐻 ) ) ) |
| 28 | 12 13 14 15 27 | psrelbas | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝐻 ) ) |
| 29 | eqid | ⊢ ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ) = ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ) | |
| 30 | 29 | fmpt | ⊢ ( ∀ 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐻 ) ↔ ( 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ) : { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ⟶ ( Base ‘ 𝐻 ) ) |
| 31 | 28 30 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → ∀ 𝑥 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } if ( 𝑥 = ( 𝐼 × { 0 } ) , 𝑋 , ( 0g ‘ 𝑅 ) ) ∈ ( Base ‘ 𝐻 ) ) |
| 32 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → 𝐼 ∈ 𝑊 ) |
| 33 | 14 | psrbag0 | ⊢ ( 𝐼 ∈ 𝑊 → ( 𝐼 × { 0 } ) ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 34 | 32 33 | syl | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → ( 𝐼 × { 0 } ) ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ) |
| 35 | 11 31 34 | rspcdva | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ 𝐻 ) ) |
| 36 | 3 | subrgbas | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 37 | 6 36 | syl | ⊢ ( 𝜑 → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 39 | 35 38 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) → 𝑋 ∈ 𝑇 ) |
| 40 | eqid | ⊢ ( algSc ‘ 𝑈 ) = ( algSc ‘ 𝑈 ) | |
| 41 | 1 2 3 4 5 6 40 | subrgascl | ⊢ ( 𝜑 → ( algSc ‘ 𝑈 ) = ( 𝐴 ↾ 𝑇 ) ) |
| 42 | 41 | fveq1d | ⊢ ( 𝜑 → ( ( algSc ‘ 𝑈 ) ‘ 𝑋 ) = ( ( 𝐴 ↾ 𝑇 ) ‘ 𝑋 ) ) |
| 43 | fvres | ⊢ ( 𝑋 ∈ 𝑇 → ( ( 𝐴 ↾ 𝑇 ) ‘ 𝑋 ) = ( 𝐴 ‘ 𝑋 ) ) | |
| 44 | 42 43 | sylan9eq | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → ( ( algSc ‘ 𝑈 ) ‘ 𝑋 ) = ( 𝐴 ‘ 𝑋 ) ) |
| 45 | eqid | ⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) | |
| 46 | 4 | mplring | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝐻 ∈ Ring ) → 𝑈 ∈ Ring ) |
| 47 | 4 | mpllmod | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝐻 ∈ Ring ) → 𝑈 ∈ LMod ) |
| 48 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) | |
| 49 | 40 45 46 47 48 7 | asclf | ⊢ ( ( 𝐼 ∈ 𝑊 ∧ 𝐻 ∈ Ring ) → ( algSc ‘ 𝑈 ) : ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟶ 𝐵 ) |
| 50 | 5 22 49 | syl2anc | ⊢ ( 𝜑 → ( algSc ‘ 𝑈 ) : ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟶ 𝐵 ) |
| 51 | 50 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → ( algSc ‘ 𝑈 ) : ( Base ‘ ( Scalar ‘ 𝑈 ) ) ⟶ 𝐵 ) |
| 52 | 4 5 22 | mplsca | ⊢ ( 𝜑 → 𝐻 = ( Scalar ‘ 𝑈 ) ) |
| 53 | 52 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐻 ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 54 | 37 53 | eqtrd | ⊢ ( 𝜑 → 𝑇 = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 55 | 54 | eleq2d | ⊢ ( 𝜑 → ( 𝑋 ∈ 𝑇 ↔ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) ) |
| 56 | 55 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 57 | 51 56 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → ( ( algSc ‘ 𝑈 ) ‘ 𝑋 ) ∈ 𝐵 ) |
| 58 | 44 57 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑇 ) → ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ) |
| 59 | 39 58 | impbida | ⊢ ( 𝜑 → ( ( 𝐴 ‘ 𝑋 ) ∈ 𝐵 ↔ 𝑋 ∈ 𝑇 ) ) |