This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalars in a polynomial algebra are in the subring algebra iff the scalar value is in the subring. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgascl.p | |- P = ( I mPoly R ) |
|
| subrgascl.a | |- A = ( algSc ` P ) |
||
| subrgascl.h | |- H = ( R |`s T ) |
||
| subrgascl.u | |- U = ( I mPoly H ) |
||
| subrgascl.i | |- ( ph -> I e. W ) |
||
| subrgascl.r | |- ( ph -> T e. ( SubRing ` R ) ) |
||
| subrgasclcl.b | |- B = ( Base ` U ) |
||
| subrgasclcl.k | |- K = ( Base ` R ) |
||
| subrgasclcl.x | |- ( ph -> X e. K ) |
||
| Assertion | subrgasclcl | |- ( ph -> ( ( A ` X ) e. B <-> X e. T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgascl.p | |- P = ( I mPoly R ) |
|
| 2 | subrgascl.a | |- A = ( algSc ` P ) |
|
| 3 | subrgascl.h | |- H = ( R |`s T ) |
|
| 4 | subrgascl.u | |- U = ( I mPoly H ) |
|
| 5 | subrgascl.i | |- ( ph -> I e. W ) |
|
| 6 | subrgascl.r | |- ( ph -> T e. ( SubRing ` R ) ) |
|
| 7 | subrgasclcl.b | |- B = ( Base ` U ) |
|
| 8 | subrgasclcl.k | |- K = ( Base ` R ) |
|
| 9 | subrgasclcl.x | |- ( ph -> X e. K ) |
|
| 10 | iftrue | |- ( x = ( I X. { 0 } ) -> if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) = X ) |
|
| 11 | 10 | eleq1d | |- ( x = ( I X. { 0 } ) -> ( if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) e. ( Base ` H ) <-> X e. ( Base ` H ) ) ) |
| 12 | eqid | |- ( I mPwSer H ) = ( I mPwSer H ) |
|
| 13 | eqid | |- ( Base ` H ) = ( Base ` H ) |
|
| 14 | eqid | |- { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 15 | eqid | |- ( Base ` ( I mPwSer H ) ) = ( Base ` ( I mPwSer H ) ) |
|
| 16 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 17 | subrgrcl | |- ( T e. ( SubRing ` R ) -> R e. Ring ) |
|
| 18 | 6 17 | syl | |- ( ph -> R e. Ring ) |
| 19 | 1 14 16 8 2 5 18 9 | mplascl | |- ( ph -> ( A ` X ) = ( x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) ) ) |
| 20 | 19 | adantr | |- ( ( ph /\ ( A ` X ) e. B ) -> ( A ` X ) = ( x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) ) ) |
| 21 | 3 | subrgring | |- ( T e. ( SubRing ` R ) -> H e. Ring ) |
| 22 | 6 21 | syl | |- ( ph -> H e. Ring ) |
| 23 | 12 4 7 5 22 | mplsubrg | |- ( ph -> B e. ( SubRing ` ( I mPwSer H ) ) ) |
| 24 | 15 | subrgss | |- ( B e. ( SubRing ` ( I mPwSer H ) ) -> B C_ ( Base ` ( I mPwSer H ) ) ) |
| 25 | 23 24 | syl | |- ( ph -> B C_ ( Base ` ( I mPwSer H ) ) ) |
| 26 | 25 | sselda | |- ( ( ph /\ ( A ` X ) e. B ) -> ( A ` X ) e. ( Base ` ( I mPwSer H ) ) ) |
| 27 | 20 26 | eqeltrrd | |- ( ( ph /\ ( A ` X ) e. B ) -> ( x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) ) e. ( Base ` ( I mPwSer H ) ) ) |
| 28 | 12 13 14 15 27 | psrelbas | |- ( ( ph /\ ( A ` X ) e. B ) -> ( x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` H ) ) |
| 29 | eqid | |- ( x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) ) = ( x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) ) |
|
| 30 | 29 | fmpt | |- ( A. x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) e. ( Base ` H ) <-> ( x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |-> if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) ) : { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } --> ( Base ` H ) ) |
| 31 | 28 30 | sylibr | |- ( ( ph /\ ( A ` X ) e. B ) -> A. x e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } if ( x = ( I X. { 0 } ) , X , ( 0g ` R ) ) e. ( Base ` H ) ) |
| 32 | 5 | adantr | |- ( ( ph /\ ( A ` X ) e. B ) -> I e. W ) |
| 33 | 14 | psrbag0 | |- ( I e. W -> ( I X. { 0 } ) e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) |
| 34 | 32 33 | syl | |- ( ( ph /\ ( A ` X ) e. B ) -> ( I X. { 0 } ) e. { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } ) |
| 35 | 11 31 34 | rspcdva | |- ( ( ph /\ ( A ` X ) e. B ) -> X e. ( Base ` H ) ) |
| 36 | 3 | subrgbas | |- ( T e. ( SubRing ` R ) -> T = ( Base ` H ) ) |
| 37 | 6 36 | syl | |- ( ph -> T = ( Base ` H ) ) |
| 38 | 37 | adantr | |- ( ( ph /\ ( A ` X ) e. B ) -> T = ( Base ` H ) ) |
| 39 | 35 38 | eleqtrrd | |- ( ( ph /\ ( A ` X ) e. B ) -> X e. T ) |
| 40 | eqid | |- ( algSc ` U ) = ( algSc ` U ) |
|
| 41 | 1 2 3 4 5 6 40 | subrgascl | |- ( ph -> ( algSc ` U ) = ( A |` T ) ) |
| 42 | 41 | fveq1d | |- ( ph -> ( ( algSc ` U ) ` X ) = ( ( A |` T ) ` X ) ) |
| 43 | fvres | |- ( X e. T -> ( ( A |` T ) ` X ) = ( A ` X ) ) |
|
| 44 | 42 43 | sylan9eq | |- ( ( ph /\ X e. T ) -> ( ( algSc ` U ) ` X ) = ( A ` X ) ) |
| 45 | eqid | |- ( Scalar ` U ) = ( Scalar ` U ) |
|
| 46 | 4 | mplring | |- ( ( I e. W /\ H e. Ring ) -> U e. Ring ) |
| 47 | 4 | mpllmod | |- ( ( I e. W /\ H e. Ring ) -> U e. LMod ) |
| 48 | eqid | |- ( Base ` ( Scalar ` U ) ) = ( Base ` ( Scalar ` U ) ) |
|
| 49 | 40 45 46 47 48 7 | asclf | |- ( ( I e. W /\ H e. Ring ) -> ( algSc ` U ) : ( Base ` ( Scalar ` U ) ) --> B ) |
| 50 | 5 22 49 | syl2anc | |- ( ph -> ( algSc ` U ) : ( Base ` ( Scalar ` U ) ) --> B ) |
| 51 | 50 | adantr | |- ( ( ph /\ X e. T ) -> ( algSc ` U ) : ( Base ` ( Scalar ` U ) ) --> B ) |
| 52 | 4 5 22 | mplsca | |- ( ph -> H = ( Scalar ` U ) ) |
| 53 | 52 | fveq2d | |- ( ph -> ( Base ` H ) = ( Base ` ( Scalar ` U ) ) ) |
| 54 | 37 53 | eqtrd | |- ( ph -> T = ( Base ` ( Scalar ` U ) ) ) |
| 55 | 54 | eleq2d | |- ( ph -> ( X e. T <-> X e. ( Base ` ( Scalar ` U ) ) ) ) |
| 56 | 55 | biimpa | |- ( ( ph /\ X e. T ) -> X e. ( Base ` ( Scalar ` U ) ) ) |
| 57 | 51 56 | ffvelcdmd | |- ( ( ph /\ X e. T ) -> ( ( algSc ` U ) ` X ) e. B ) |
| 58 | 44 57 | eqeltrrd | |- ( ( ph /\ X e. T ) -> ( A ` X ) e. B ) |
| 59 | 39 58 | impbida | |- ( ph -> ( ( A ` X ) e. B <-> X e. T ) ) |