This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar injection function in a subring algebra is the same up to a restriction to the subring. (Contributed by Mario Carneiro, 4-Jul-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subrgascl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| subrgascl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | ||
| subrgascl.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | ||
| subrgascl.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) | ||
| subrgascl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| subrgascl.r | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | ||
| subrgascl.c | ⊢ 𝐶 = ( algSc ‘ 𝑈 ) | ||
| Assertion | subrgascl | ⊢ ( 𝜑 → 𝐶 = ( 𝐴 ↾ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgascl.p | ⊢ 𝑃 = ( 𝐼 mPoly 𝑅 ) | |
| 2 | subrgascl.a | ⊢ 𝐴 = ( algSc ‘ 𝑃 ) | |
| 3 | subrgascl.h | ⊢ 𝐻 = ( 𝑅 ↾s 𝑇 ) | |
| 4 | subrgascl.u | ⊢ 𝑈 = ( 𝐼 mPoly 𝐻 ) | |
| 5 | subrgascl.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 6 | subrgascl.r | ⊢ ( 𝜑 → 𝑇 ∈ ( SubRing ‘ 𝑅 ) ) | |
| 7 | subrgascl.c | ⊢ 𝐶 = ( algSc ‘ 𝑈 ) | |
| 8 | eqid | ⊢ ( Scalar ‘ 𝑈 ) = ( Scalar ‘ 𝑈 ) | |
| 9 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑈 ) ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) | |
| 10 | 7 8 9 | asclfn | ⊢ 𝐶 Fn ( Base ‘ ( Scalar ‘ 𝑈 ) ) |
| 11 | 3 | subrgbas | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 12 | 6 11 | syl | ⊢ ( 𝜑 → 𝑇 = ( Base ‘ 𝐻 ) ) |
| 13 | 3 | ovexi | ⊢ 𝐻 ∈ V |
| 14 | 13 | a1i | ⊢ ( 𝜑 → 𝐻 ∈ V ) |
| 15 | 4 5 14 | mplsca | ⊢ ( 𝜑 → 𝐻 = ( Scalar ‘ 𝑈 ) ) |
| 16 | 15 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝐻 ) = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 17 | 12 16 | eqtrd | ⊢ ( 𝜑 → 𝑇 = ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) |
| 18 | 17 | fneq2d | ⊢ ( 𝜑 → ( 𝐶 Fn 𝑇 ↔ 𝐶 Fn ( Base ‘ ( Scalar ‘ 𝑈 ) ) ) ) |
| 19 | 10 18 | mpbiri | ⊢ ( 𝜑 → 𝐶 Fn 𝑇 ) |
| 20 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 21 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) | |
| 22 | 2 20 21 | asclfn | ⊢ 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 23 | subrgrcl | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑅 ∈ Ring ) | |
| 24 | 6 23 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 25 | 1 5 24 | mplsca | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 26 | 25 | fveq2d | ⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 27 | 26 | fneq2d | ⊢ ( 𝜑 → ( 𝐴 Fn ( Base ‘ 𝑅 ) ↔ 𝐴 Fn ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) ) |
| 28 | 22 27 | mpbiri | ⊢ ( 𝜑 → 𝐴 Fn ( Base ‘ 𝑅 ) ) |
| 29 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 30 | 29 | subrgss | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝑇 ⊆ ( Base ‘ 𝑅 ) ) |
| 31 | 6 30 | syl | ⊢ ( 𝜑 → 𝑇 ⊆ ( Base ‘ 𝑅 ) ) |
| 32 | fnssres | ⊢ ( ( 𝐴 Fn ( Base ‘ 𝑅 ) ∧ 𝑇 ⊆ ( Base ‘ 𝑅 ) ) → ( 𝐴 ↾ 𝑇 ) Fn 𝑇 ) | |
| 33 | 28 31 32 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ↾ 𝑇 ) Fn 𝑇 ) |
| 34 | fvres | ⊢ ( 𝑥 ∈ 𝑇 → ( ( 𝐴 ↾ 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) | |
| 35 | 34 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( ( 𝐴 ↾ 𝑇 ) ‘ 𝑥 ) = ( 𝐴 ‘ 𝑥 ) ) |
| 36 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 37 | 3 36 | subrg0 | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐻 ) ) |
| 38 | 6 37 | syl | ⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝐻 ) ) |
| 39 | 38 | ifeq2d | ⊢ ( 𝜑 → if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝑅 ) ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝐻 ) ) ) |
| 40 | 39 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝑅 ) ) = if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝐻 ) ) ) |
| 41 | 40 | mpteq2dv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝑅 ) ) ) = ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝐻 ) ) ) ) |
| 42 | eqid | ⊢ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } | |
| 43 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → 𝐼 ∈ 𝑊 ) |
| 44 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → 𝑅 ∈ Ring ) |
| 45 | 31 | sselda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 46 | 1 42 36 29 2 43 44 45 | mplascl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝑅 ) ) ) ) |
| 47 | eqid | ⊢ ( 0g ‘ 𝐻 ) = ( 0g ‘ 𝐻 ) | |
| 48 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 49 | 3 | subrgring | ⊢ ( 𝑇 ∈ ( SubRing ‘ 𝑅 ) → 𝐻 ∈ Ring ) |
| 50 | 6 49 | syl | ⊢ ( 𝜑 → 𝐻 ∈ Ring ) |
| 51 | 50 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → 𝐻 ∈ Ring ) |
| 52 | 12 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑇 ↔ 𝑥 ∈ ( Base ‘ 𝐻 ) ) ) |
| 53 | 52 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → 𝑥 ∈ ( Base ‘ 𝐻 ) ) |
| 54 | 4 42 47 48 7 43 51 53 | mplascl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐶 ‘ 𝑥 ) = ( 𝑦 ∈ { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } ↦ if ( 𝑦 = ( 𝐼 × { 0 } ) , 𝑥 , ( 0g ‘ 𝐻 ) ) ) ) |
| 55 | 41 46 54 | 3eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐴 ‘ 𝑥 ) = ( 𝐶 ‘ 𝑥 ) ) |
| 56 | 35 55 | eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑇 ) → ( 𝐶 ‘ 𝑥 ) = ( ( 𝐴 ↾ 𝑇 ) ‘ 𝑥 ) ) |
| 57 | 19 33 56 | eqfnfvd | ⊢ ( 𝜑 → 𝐶 = ( 𝐴 ↾ 𝑇 ) ) |