This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem *3.44 of WhiteheadRussell p. 113. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 3-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm3.44 | ⊢ ( ( ( 𝜓 → 𝜑 ) ∧ ( 𝜒 → 𝜑 ) ) → ( ( 𝜓 ∨ 𝜒 ) → 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( ( 𝜓 → 𝜑 ) → ( 𝜓 → 𝜑 ) ) | |
| 2 | id | ⊢ ( ( 𝜒 → 𝜑 ) → ( 𝜒 → 𝜑 ) ) | |
| 3 | 1 2 | jaao | ⊢ ( ( ( 𝜓 → 𝜑 ) ∧ ( 𝜒 → 𝜑 ) ) → ( ( 𝜓 ∨ 𝜒 ) → 𝜑 ) ) |