This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Shorter proof of ssfi using ax-pow . (Contributed by NM, 24-Jun-1998) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssfiALT | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi | ⊢ ( 𝐴 ∈ Fin ↔ ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 ) | |
| 2 | bren | ⊢ ( 𝐴 ≈ 𝑥 ↔ ∃ 𝑧 𝑧 : 𝐴 –1-1-onto→ 𝑥 ) | |
| 3 | f1ofo | ⊢ ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 → 𝑧 : 𝐴 –onto→ 𝑥 ) | |
| 4 | imassrn | ⊢ ( 𝑧 “ 𝐵 ) ⊆ ran 𝑧 | |
| 5 | forn | ⊢ ( 𝑧 : 𝐴 –onto→ 𝑥 → ran 𝑧 = 𝑥 ) | |
| 6 | 4 5 | sseqtrid | ⊢ ( 𝑧 : 𝐴 –onto→ 𝑥 → ( 𝑧 “ 𝐵 ) ⊆ 𝑥 ) |
| 7 | 3 6 | syl | ⊢ ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 → ( 𝑧 “ 𝐵 ) ⊆ 𝑥 ) |
| 8 | ssnnfi | ⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑧 “ 𝐵 ) ⊆ 𝑥 ) → ( 𝑧 “ 𝐵 ) ∈ Fin ) | |
| 9 | isfi | ⊢ ( ( 𝑧 “ 𝐵 ) ∈ Fin ↔ ∃ 𝑦 ∈ ω ( 𝑧 “ 𝐵 ) ≈ 𝑦 ) | |
| 10 | 8 9 | sylib | ⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑧 “ 𝐵 ) ⊆ 𝑥 ) → ∃ 𝑦 ∈ ω ( 𝑧 “ 𝐵 ) ≈ 𝑦 ) |
| 11 | 7 10 | sylan2 | ⊢ ( ( 𝑥 ∈ ω ∧ 𝑧 : 𝐴 –1-1-onto→ 𝑥 ) → ∃ 𝑦 ∈ ω ( 𝑧 “ 𝐵 ) ≈ 𝑦 ) |
| 12 | 11 | adantrr | ⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) ) → ∃ 𝑦 ∈ ω ( 𝑧 “ 𝐵 ) ≈ 𝑦 ) |
| 13 | f1of1 | ⊢ ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 → 𝑧 : 𝐴 –1-1→ 𝑥 ) | |
| 14 | f1ores | ⊢ ( ( 𝑧 : 𝐴 –1-1→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑧 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) ) | |
| 15 | 13 14 | sylan | ⊢ ( ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝑧 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) ) |
| 16 | vex | ⊢ 𝑧 ∈ V | |
| 17 | 16 | resex | ⊢ ( 𝑧 ↾ 𝐵 ) ∈ V |
| 18 | f1oeq1 | ⊢ ( 𝑥 = ( 𝑧 ↾ 𝐵 ) → ( 𝑥 : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) ↔ ( 𝑧 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) ) ) | |
| 19 | 17 18 | spcev | ⊢ ( ( 𝑧 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) → ∃ 𝑥 𝑥 : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) ) |
| 20 | bren | ⊢ ( 𝐵 ≈ ( 𝑧 “ 𝐵 ) ↔ ∃ 𝑥 𝑥 : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) ) | |
| 21 | 19 20 | sylibr | ⊢ ( ( 𝑧 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) → 𝐵 ≈ ( 𝑧 “ 𝐵 ) ) |
| 22 | entr | ⊢ ( ( 𝐵 ≈ ( 𝑧 “ 𝐵 ) ∧ ( 𝑧 “ 𝐵 ) ≈ 𝑦 ) → 𝐵 ≈ 𝑦 ) | |
| 23 | 21 22 | sylan | ⊢ ( ( ( 𝑧 ↾ 𝐵 ) : 𝐵 –1-1-onto→ ( 𝑧 “ 𝐵 ) ∧ ( 𝑧 “ 𝐵 ) ≈ 𝑦 ) → 𝐵 ≈ 𝑦 ) |
| 24 | 15 23 | sylan | ⊢ ( ( ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) ∧ ( 𝑧 “ 𝐵 ) ≈ 𝑦 ) → 𝐵 ≈ 𝑦 ) |
| 25 | 24 | ex | ⊢ ( ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) → ( ( 𝑧 “ 𝐵 ) ≈ 𝑦 → 𝐵 ≈ 𝑦 ) ) |
| 26 | 25 | reximdv | ⊢ ( ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑦 ∈ ω ( 𝑧 “ 𝐵 ) ≈ 𝑦 → ∃ 𝑦 ∈ ω 𝐵 ≈ 𝑦 ) ) |
| 27 | isfi | ⊢ ( 𝐵 ∈ Fin ↔ ∃ 𝑦 ∈ ω 𝐵 ≈ 𝑦 ) | |
| 28 | 26 27 | imbitrrdi | ⊢ ( ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) → ( ∃ 𝑦 ∈ ω ( 𝑧 “ 𝐵 ) ≈ 𝑦 → 𝐵 ∈ Fin ) ) |
| 29 | 28 | adantl | ⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) ) → ( ∃ 𝑦 ∈ ω ( 𝑧 “ 𝐵 ) ≈ 𝑦 → 𝐵 ∈ Fin ) ) |
| 30 | 12 29 | mpd | ⊢ ( ( 𝑥 ∈ ω ∧ ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 ∧ 𝐵 ⊆ 𝐴 ) ) → 𝐵 ∈ Fin ) |
| 31 | 30 | exp32 | ⊢ ( 𝑥 ∈ ω → ( 𝑧 : 𝐴 –1-1-onto→ 𝑥 → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) ) |
| 32 | 31 | exlimdv | ⊢ ( 𝑥 ∈ ω → ( ∃ 𝑧 𝑧 : 𝐴 –1-1-onto→ 𝑥 → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) ) |
| 33 | 2 32 | biimtrid | ⊢ ( 𝑥 ∈ ω → ( 𝐴 ≈ 𝑥 → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) ) |
| 34 | 33 | rexlimiv | ⊢ ( ∃ 𝑥 ∈ ω 𝐴 ≈ 𝑥 → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) |
| 35 | 1 34 | sylbi | ⊢ ( 𝐴 ∈ Fin → ( 𝐵 ⊆ 𝐴 → 𝐵 ∈ Fin ) ) |
| 36 | 35 | imp | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴 ) → 𝐵 ∈ Fin ) |