This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square distributes over gcd. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqgcd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) = ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdnncl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℕ ) | |
| 2 | 1 | nnsqcld | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∈ ℕ ) |
| 3 | 2 | nncnd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∈ ℂ ) |
| 4 | 3 | mulridd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) · 1 ) = ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) |
| 5 | nnsqcl | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ 2 ) ∈ ℕ ) | |
| 6 | 5 | nnzd | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ 2 ) ∈ ℤ ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 ↑ 2 ) ∈ ℤ ) |
| 8 | nnsqcl | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 2 ) ∈ ℕ ) | |
| 9 | 8 | nnzd | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ↑ 2 ) ∈ ℤ ) |
| 10 | 9 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 ↑ 2 ) ∈ ℤ ) |
| 11 | nnz | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℤ ) | |
| 12 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 13 | gcddvds | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) | |
| 14 | 11 12 13 | syl2an | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) |
| 15 | 14 | simpld | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ) |
| 16 | 1 | nnzd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℤ ) |
| 17 | 11 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 18 | dvdssqim | ⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∥ ( 𝑀 ↑ 2 ) ) ) | |
| 19 | 16 17 18 | syl2anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∥ ( 𝑀 ↑ 2 ) ) ) |
| 20 | 15 19 | mpd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∥ ( 𝑀 ↑ 2 ) ) |
| 21 | 14 | simprd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) |
| 22 | 12 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℤ ) |
| 23 | dvdssqim | ⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) | |
| 24 | 16 22 23 | syl2anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 25 | 21 24 | mpd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) |
| 26 | gcddiv | ⊢ ( ( ( ( 𝑀 ↑ 2 ) ∈ ℤ ∧ ( 𝑁 ↑ 2 ) ∈ ℤ ∧ ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∈ ℕ ) ∧ ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∥ ( 𝑀 ↑ 2 ) ∧ ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) → ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) = ( ( ( 𝑀 ↑ 2 ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) gcd ( ( 𝑁 ↑ 2 ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) ) ) | |
| 27 | 7 10 2 20 25 26 | syl32anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) = ( ( ( 𝑀 ↑ 2 ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) gcd ( ( 𝑁 ↑ 2 ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) ) ) |
| 28 | nncn | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℂ ) | |
| 29 | 28 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
| 30 | 1 | nncnd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℂ ) |
| 31 | 1 | nnne0d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ≠ 0 ) |
| 32 | 29 30 31 | sqdivd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) = ( ( 𝑀 ↑ 2 ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) ) |
| 33 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 34 | 33 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 35 | 34 30 31 | sqdivd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) = ( ( 𝑁 ↑ 2 ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) ) |
| 36 | 32 35 | oveq12d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) gcd ( ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) ) = ( ( ( 𝑀 ↑ 2 ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) gcd ( ( 𝑁 ↑ 2 ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) ) ) |
| 37 | gcddiv | ⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 gcd 𝑁 ) ∈ ℕ ) ∧ ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ∧ ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ) ) → ( ( 𝑀 gcd 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) = ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) gcd ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) ) | |
| 38 | 17 22 1 14 37 | syl31anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) = ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) gcd ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) ) |
| 39 | 30 31 | dividd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) / ( 𝑀 gcd 𝑁 ) ) = 1 ) |
| 40 | 38 39 | eqtr3d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) gcd ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) = 1 ) |
| 41 | dvdsval2 | ⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ ( 𝑀 gcd 𝑁 ) ≠ 0 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ↔ ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) ) | |
| 42 | 16 31 17 41 | syl3anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑀 ↔ ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) ) |
| 43 | 15 42 | mpbid | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) |
| 44 | nnre | ⊢ ( 𝑀 ∈ ℕ → 𝑀 ∈ ℝ ) | |
| 45 | 44 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℝ ) |
| 46 | 1 | nnred | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 gcd 𝑁 ) ∈ ℝ ) |
| 47 | nngt0 | ⊢ ( 𝑀 ∈ ℕ → 0 < 𝑀 ) | |
| 48 | 47 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 < 𝑀 ) |
| 49 | 1 | nngt0d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 < ( 𝑀 gcd 𝑁 ) ) |
| 50 | 45 46 48 49 | divgt0d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 < ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ) |
| 51 | elnnz | ⊢ ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ↔ ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ∧ 0 < ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ) ) | |
| 52 | 43 50 51 | sylanbrc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ) |
| 53 | dvdsval2 | ⊢ ( ( ( 𝑀 gcd 𝑁 ) ∈ ℤ ∧ ( 𝑀 gcd 𝑁 ) ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) ) | |
| 54 | 16 31 22 53 | syl3anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ∥ 𝑁 ↔ ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) ) |
| 55 | 21 54 | mpbid | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ) |
| 56 | nnre | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) | |
| 57 | 56 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℝ ) |
| 58 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 59 | 58 | adantl | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 < 𝑁 ) |
| 60 | 57 46 59 49 | divgt0d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → 0 < ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) |
| 61 | elnnz | ⊢ ( ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ↔ ( ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℤ ∧ 0 < ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) ) | |
| 62 | 55 60 61 | sylanbrc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ) |
| 63 | 2nn | ⊢ 2 ∈ ℕ | |
| 64 | rppwr | ⊢ ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ∧ ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ∧ 2 ∈ ℕ ) → ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) gcd ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) = 1 → ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) gcd ( ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) ) = 1 ) ) | |
| 65 | 63 64 | mp3an3 | ⊢ ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ∧ ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ∈ ℕ ) → ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) gcd ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) = 1 → ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) gcd ( ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) ) = 1 ) ) |
| 66 | 52 62 65 | syl2anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) gcd ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ) = 1 → ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) gcd ( ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) ) = 1 ) ) |
| 67 | 40 66 | mpd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) gcd ( ( 𝑁 / ( 𝑀 gcd 𝑁 ) ) ↑ 2 ) ) = 1 ) |
| 68 | 27 36 67 | 3eqtr2d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) = 1 ) |
| 69 | 6 9 | anim12i | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 ↑ 2 ) ∈ ℤ ∧ ( 𝑁 ↑ 2 ) ∈ ℤ ) ) |
| 70 | 5 | nnne0d | ⊢ ( 𝑀 ∈ ℕ → ( 𝑀 ↑ 2 ) ≠ 0 ) |
| 71 | 70 | neneqd | ⊢ ( 𝑀 ∈ ℕ → ¬ ( 𝑀 ↑ 2 ) = 0 ) |
| 72 | 71 | intnanrd | ⊢ ( 𝑀 ∈ ℕ → ¬ ( ( 𝑀 ↑ 2 ) = 0 ∧ ( 𝑁 ↑ 2 ) = 0 ) ) |
| 73 | 72 | adantr | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ¬ ( ( 𝑀 ↑ 2 ) = 0 ∧ ( 𝑁 ↑ 2 ) = 0 ) ) |
| 74 | gcdn0cl | ⊢ ( ( ( ( 𝑀 ↑ 2 ) ∈ ℤ ∧ ( 𝑁 ↑ 2 ) ∈ ℤ ) ∧ ¬ ( ( 𝑀 ↑ 2 ) = 0 ∧ ( 𝑁 ↑ 2 ) = 0 ) ) → ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ∈ ℕ ) | |
| 75 | 69 73 74 | syl2anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ∈ ℕ ) |
| 76 | 75 | nncnd | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ∈ ℂ ) |
| 77 | 2 | nnne0d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ≠ 0 ) |
| 78 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 79 | divmul | ⊢ ( ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∈ ℂ ∧ ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ≠ 0 ) ) → ( ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) = 1 ↔ ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) · 1 ) = ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ) ) | |
| 80 | 78 79 | mp3an2 | ⊢ ( ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ∈ ℂ ∧ ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ∈ ℂ ∧ ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ≠ 0 ) ) → ( ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) = 1 ↔ ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) · 1 ) = ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ) ) |
| 81 | 76 3 77 80 | syl12anc | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) / ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) ) = 1 ↔ ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) · 1 ) = ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ) ) |
| 82 | 68 81 | mpbid | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) · 1 ) = ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ) |
| 83 | 4 82 | eqtr3d | ⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑀 gcd 𝑁 ) ↑ 2 ) = ( ( 𝑀 ↑ 2 ) gcd ( 𝑁 ↑ 2 ) ) ) |