This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Unidirectional form of dvdssq . (Contributed by Scott Fenton, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdssqim | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 → ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 ↔ ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝑀 ) = 𝑁 ) ) | |
| 2 | zsqcl | ⊢ ( 𝑘 ∈ ℤ → ( 𝑘 ↑ 2 ) ∈ ℤ ) | |
| 3 | zsqcl | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ↑ 2 ) ∈ ℤ ) | |
| 4 | dvdsmul2 | ⊢ ( ( ( 𝑘 ↑ 2 ) ∈ ℤ ∧ ( 𝑀 ↑ 2 ) ∈ ℤ ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝑘 ↑ 2 ) · ( 𝑀 ↑ 2 ) ) ) | |
| 5 | 2 3 4 | syl2anr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝑘 ↑ 2 ) · ( 𝑀 ↑ 2 ) ) ) |
| 6 | zcn | ⊢ ( 𝑘 ∈ ℤ → 𝑘 ∈ ℂ ) | |
| 7 | zcn | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) | |
| 8 | sqmul | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( ( 𝑘 · 𝑀 ) ↑ 2 ) = ( ( 𝑘 ↑ 2 ) · ( 𝑀 ↑ 2 ) ) ) | |
| 9 | 6 7 8 | syl2anr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑘 · 𝑀 ) ↑ 2 ) = ( ( 𝑘 ↑ 2 ) · ( 𝑀 ↑ 2 ) ) ) |
| 10 | 5 9 | breqtrrd | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑀 ↑ 2 ) ∥ ( ( 𝑘 · 𝑀 ) ↑ 2 ) ) |
| 11 | oveq1 | ⊢ ( ( 𝑘 · 𝑀 ) = 𝑁 → ( ( 𝑘 · 𝑀 ) ↑ 2 ) = ( 𝑁 ↑ 2 ) ) | |
| 12 | 11 | breq2d | ⊢ ( ( 𝑘 · 𝑀 ) = 𝑁 → ( ( 𝑀 ↑ 2 ) ∥ ( ( 𝑘 · 𝑀 ) ↑ 2 ) ↔ ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 13 | 10 12 | syl5ibcom | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑘 · 𝑀 ) = 𝑁 → ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 14 | 13 | rexlimdva | ⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝑀 ) = 𝑁 → ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ∃ 𝑘 ∈ ℤ ( 𝑘 · 𝑀 ) = 𝑁 → ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |
| 16 | 1 15 | sylbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 ∥ 𝑁 → ( 𝑀 ↑ 2 ) ∥ ( 𝑁 ↑ 2 ) ) ) |