This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Square distributes over gcd. (Contributed by Scott Fenton, 18-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sqgcd | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) ^ 2 ) = ( ( M ^ 2 ) gcd ( N ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdnncl | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. NN ) |
|
| 2 | 1 | nnsqcld | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) ^ 2 ) e. NN ) |
| 3 | 2 | nncnd | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) ^ 2 ) e. CC ) |
| 4 | 3 | mulridd | |- ( ( M e. NN /\ N e. NN ) -> ( ( ( M gcd N ) ^ 2 ) x. 1 ) = ( ( M gcd N ) ^ 2 ) ) |
| 5 | nnsqcl | |- ( M e. NN -> ( M ^ 2 ) e. NN ) |
|
| 6 | 5 | nnzd | |- ( M e. NN -> ( M ^ 2 ) e. ZZ ) |
| 7 | 6 | adantr | |- ( ( M e. NN /\ N e. NN ) -> ( M ^ 2 ) e. ZZ ) |
| 8 | nnsqcl | |- ( N e. NN -> ( N ^ 2 ) e. NN ) |
|
| 9 | 8 | nnzd | |- ( N e. NN -> ( N ^ 2 ) e. ZZ ) |
| 10 | 9 | adantl | |- ( ( M e. NN /\ N e. NN ) -> ( N ^ 2 ) e. ZZ ) |
| 11 | nnz | |- ( M e. NN -> M e. ZZ ) |
|
| 12 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 13 | gcddvds | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
|
| 14 | 11 12 13 | syl2an | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
| 15 | 14 | simpld | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) || M ) |
| 16 | 1 | nnzd | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. ZZ ) |
| 17 | 11 | adantr | |- ( ( M e. NN /\ N e. NN ) -> M e. ZZ ) |
| 18 | dvdssqim | |- ( ( ( M gcd N ) e. ZZ /\ M e. ZZ ) -> ( ( M gcd N ) || M -> ( ( M gcd N ) ^ 2 ) || ( M ^ 2 ) ) ) |
|
| 19 | 16 17 18 | syl2anc | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || M -> ( ( M gcd N ) ^ 2 ) || ( M ^ 2 ) ) ) |
| 20 | 15 19 | mpd | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) ^ 2 ) || ( M ^ 2 ) ) |
| 21 | 14 | simprd | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) || N ) |
| 22 | 12 | adantl | |- ( ( M e. NN /\ N e. NN ) -> N e. ZZ ) |
| 23 | dvdssqim | |- ( ( ( M gcd N ) e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || N -> ( ( M gcd N ) ^ 2 ) || ( N ^ 2 ) ) ) |
|
| 24 | 16 22 23 | syl2anc | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || N -> ( ( M gcd N ) ^ 2 ) || ( N ^ 2 ) ) ) |
| 25 | 21 24 | mpd | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) ^ 2 ) || ( N ^ 2 ) ) |
| 26 | gcddiv | |- ( ( ( ( M ^ 2 ) e. ZZ /\ ( N ^ 2 ) e. ZZ /\ ( ( M gcd N ) ^ 2 ) e. NN ) /\ ( ( ( M gcd N ) ^ 2 ) || ( M ^ 2 ) /\ ( ( M gcd N ) ^ 2 ) || ( N ^ 2 ) ) ) -> ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) / ( ( M gcd N ) ^ 2 ) ) = ( ( ( M ^ 2 ) / ( ( M gcd N ) ^ 2 ) ) gcd ( ( N ^ 2 ) / ( ( M gcd N ) ^ 2 ) ) ) ) |
|
| 27 | 7 10 2 20 25 26 | syl32anc | |- ( ( M e. NN /\ N e. NN ) -> ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) / ( ( M gcd N ) ^ 2 ) ) = ( ( ( M ^ 2 ) / ( ( M gcd N ) ^ 2 ) ) gcd ( ( N ^ 2 ) / ( ( M gcd N ) ^ 2 ) ) ) ) |
| 28 | nncn | |- ( M e. NN -> M e. CC ) |
|
| 29 | 28 | adantr | |- ( ( M e. NN /\ N e. NN ) -> M e. CC ) |
| 30 | 1 | nncnd | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. CC ) |
| 31 | 1 | nnne0d | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) =/= 0 ) |
| 32 | 29 30 31 | sqdivd | |- ( ( M e. NN /\ N e. NN ) -> ( ( M / ( M gcd N ) ) ^ 2 ) = ( ( M ^ 2 ) / ( ( M gcd N ) ^ 2 ) ) ) |
| 33 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 34 | 33 | adantl | |- ( ( M e. NN /\ N e. NN ) -> N e. CC ) |
| 35 | 34 30 31 | sqdivd | |- ( ( M e. NN /\ N e. NN ) -> ( ( N / ( M gcd N ) ) ^ 2 ) = ( ( N ^ 2 ) / ( ( M gcd N ) ^ 2 ) ) ) |
| 36 | 32 35 | oveq12d | |- ( ( M e. NN /\ N e. NN ) -> ( ( ( M / ( M gcd N ) ) ^ 2 ) gcd ( ( N / ( M gcd N ) ) ^ 2 ) ) = ( ( ( M ^ 2 ) / ( ( M gcd N ) ^ 2 ) ) gcd ( ( N ^ 2 ) / ( ( M gcd N ) ^ 2 ) ) ) ) |
| 37 | gcddiv | |- ( ( ( M e. ZZ /\ N e. ZZ /\ ( M gcd N ) e. NN ) /\ ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) -> ( ( M gcd N ) / ( M gcd N ) ) = ( ( M / ( M gcd N ) ) gcd ( N / ( M gcd N ) ) ) ) |
|
| 38 | 17 22 1 14 37 | syl31anc | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) / ( M gcd N ) ) = ( ( M / ( M gcd N ) ) gcd ( N / ( M gcd N ) ) ) ) |
| 39 | 30 31 | dividd | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) / ( M gcd N ) ) = 1 ) |
| 40 | 38 39 | eqtr3d | |- ( ( M e. NN /\ N e. NN ) -> ( ( M / ( M gcd N ) ) gcd ( N / ( M gcd N ) ) ) = 1 ) |
| 41 | dvdsval2 | |- ( ( ( M gcd N ) e. ZZ /\ ( M gcd N ) =/= 0 /\ M e. ZZ ) -> ( ( M gcd N ) || M <-> ( M / ( M gcd N ) ) e. ZZ ) ) |
|
| 42 | 16 31 17 41 | syl3anc | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || M <-> ( M / ( M gcd N ) ) e. ZZ ) ) |
| 43 | 15 42 | mpbid | |- ( ( M e. NN /\ N e. NN ) -> ( M / ( M gcd N ) ) e. ZZ ) |
| 44 | nnre | |- ( M e. NN -> M e. RR ) |
|
| 45 | 44 | adantr | |- ( ( M e. NN /\ N e. NN ) -> M e. RR ) |
| 46 | 1 | nnred | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. RR ) |
| 47 | nngt0 | |- ( M e. NN -> 0 < M ) |
|
| 48 | 47 | adantr | |- ( ( M e. NN /\ N e. NN ) -> 0 < M ) |
| 49 | 1 | nngt0d | |- ( ( M e. NN /\ N e. NN ) -> 0 < ( M gcd N ) ) |
| 50 | 45 46 48 49 | divgt0d | |- ( ( M e. NN /\ N e. NN ) -> 0 < ( M / ( M gcd N ) ) ) |
| 51 | elnnz | |- ( ( M / ( M gcd N ) ) e. NN <-> ( ( M / ( M gcd N ) ) e. ZZ /\ 0 < ( M / ( M gcd N ) ) ) ) |
|
| 52 | 43 50 51 | sylanbrc | |- ( ( M e. NN /\ N e. NN ) -> ( M / ( M gcd N ) ) e. NN ) |
| 53 | dvdsval2 | |- ( ( ( M gcd N ) e. ZZ /\ ( M gcd N ) =/= 0 /\ N e. ZZ ) -> ( ( M gcd N ) || N <-> ( N / ( M gcd N ) ) e. ZZ ) ) |
|
| 54 | 16 31 22 53 | syl3anc | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || N <-> ( N / ( M gcd N ) ) e. ZZ ) ) |
| 55 | 21 54 | mpbid | |- ( ( M e. NN /\ N e. NN ) -> ( N / ( M gcd N ) ) e. ZZ ) |
| 56 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 57 | 56 | adantl | |- ( ( M e. NN /\ N e. NN ) -> N e. RR ) |
| 58 | nngt0 | |- ( N e. NN -> 0 < N ) |
|
| 59 | 58 | adantl | |- ( ( M e. NN /\ N e. NN ) -> 0 < N ) |
| 60 | 57 46 59 49 | divgt0d | |- ( ( M e. NN /\ N e. NN ) -> 0 < ( N / ( M gcd N ) ) ) |
| 61 | elnnz | |- ( ( N / ( M gcd N ) ) e. NN <-> ( ( N / ( M gcd N ) ) e. ZZ /\ 0 < ( N / ( M gcd N ) ) ) ) |
|
| 62 | 55 60 61 | sylanbrc | |- ( ( M e. NN /\ N e. NN ) -> ( N / ( M gcd N ) ) e. NN ) |
| 63 | 2nn | |- 2 e. NN |
|
| 64 | rppwr | |- ( ( ( M / ( M gcd N ) ) e. NN /\ ( N / ( M gcd N ) ) e. NN /\ 2 e. NN ) -> ( ( ( M / ( M gcd N ) ) gcd ( N / ( M gcd N ) ) ) = 1 -> ( ( ( M / ( M gcd N ) ) ^ 2 ) gcd ( ( N / ( M gcd N ) ) ^ 2 ) ) = 1 ) ) |
|
| 65 | 63 64 | mp3an3 | |- ( ( ( M / ( M gcd N ) ) e. NN /\ ( N / ( M gcd N ) ) e. NN ) -> ( ( ( M / ( M gcd N ) ) gcd ( N / ( M gcd N ) ) ) = 1 -> ( ( ( M / ( M gcd N ) ) ^ 2 ) gcd ( ( N / ( M gcd N ) ) ^ 2 ) ) = 1 ) ) |
| 66 | 52 62 65 | syl2anc | |- ( ( M e. NN /\ N e. NN ) -> ( ( ( M / ( M gcd N ) ) gcd ( N / ( M gcd N ) ) ) = 1 -> ( ( ( M / ( M gcd N ) ) ^ 2 ) gcd ( ( N / ( M gcd N ) ) ^ 2 ) ) = 1 ) ) |
| 67 | 40 66 | mpd | |- ( ( M e. NN /\ N e. NN ) -> ( ( ( M / ( M gcd N ) ) ^ 2 ) gcd ( ( N / ( M gcd N ) ) ^ 2 ) ) = 1 ) |
| 68 | 27 36 67 | 3eqtr2d | |- ( ( M e. NN /\ N e. NN ) -> ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) / ( ( M gcd N ) ^ 2 ) ) = 1 ) |
| 69 | 6 9 | anim12i | |- ( ( M e. NN /\ N e. NN ) -> ( ( M ^ 2 ) e. ZZ /\ ( N ^ 2 ) e. ZZ ) ) |
| 70 | 5 | nnne0d | |- ( M e. NN -> ( M ^ 2 ) =/= 0 ) |
| 71 | 70 | neneqd | |- ( M e. NN -> -. ( M ^ 2 ) = 0 ) |
| 72 | 71 | intnanrd | |- ( M e. NN -> -. ( ( M ^ 2 ) = 0 /\ ( N ^ 2 ) = 0 ) ) |
| 73 | 72 | adantr | |- ( ( M e. NN /\ N e. NN ) -> -. ( ( M ^ 2 ) = 0 /\ ( N ^ 2 ) = 0 ) ) |
| 74 | gcdn0cl | |- ( ( ( ( M ^ 2 ) e. ZZ /\ ( N ^ 2 ) e. ZZ ) /\ -. ( ( M ^ 2 ) = 0 /\ ( N ^ 2 ) = 0 ) ) -> ( ( M ^ 2 ) gcd ( N ^ 2 ) ) e. NN ) |
|
| 75 | 69 73 74 | syl2anc | |- ( ( M e. NN /\ N e. NN ) -> ( ( M ^ 2 ) gcd ( N ^ 2 ) ) e. NN ) |
| 76 | 75 | nncnd | |- ( ( M e. NN /\ N e. NN ) -> ( ( M ^ 2 ) gcd ( N ^ 2 ) ) e. CC ) |
| 77 | 2 | nnne0d | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) ^ 2 ) =/= 0 ) |
| 78 | ax-1cn | |- 1 e. CC |
|
| 79 | divmul | |- ( ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) e. CC /\ 1 e. CC /\ ( ( ( M gcd N ) ^ 2 ) e. CC /\ ( ( M gcd N ) ^ 2 ) =/= 0 ) ) -> ( ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) / ( ( M gcd N ) ^ 2 ) ) = 1 <-> ( ( ( M gcd N ) ^ 2 ) x. 1 ) = ( ( M ^ 2 ) gcd ( N ^ 2 ) ) ) ) |
|
| 80 | 78 79 | mp3an2 | |- ( ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) e. CC /\ ( ( ( M gcd N ) ^ 2 ) e. CC /\ ( ( M gcd N ) ^ 2 ) =/= 0 ) ) -> ( ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) / ( ( M gcd N ) ^ 2 ) ) = 1 <-> ( ( ( M gcd N ) ^ 2 ) x. 1 ) = ( ( M ^ 2 ) gcd ( N ^ 2 ) ) ) ) |
| 81 | 76 3 77 80 | syl12anc | |- ( ( M e. NN /\ N e. NN ) -> ( ( ( ( M ^ 2 ) gcd ( N ^ 2 ) ) / ( ( M gcd N ) ^ 2 ) ) = 1 <-> ( ( ( M gcd N ) ^ 2 ) x. 1 ) = ( ( M ^ 2 ) gcd ( N ^ 2 ) ) ) ) |
| 82 | 68 81 | mpbid | |- ( ( M e. NN /\ N e. NN ) -> ( ( ( M gcd N ) ^ 2 ) x. 1 ) = ( ( M ^ 2 ) gcd ( N ^ 2 ) ) ) |
| 83 | 4 82 | eqtr3d | |- ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) ^ 2 ) = ( ( M ^ 2 ) gcd ( N ^ 2 ) ) ) |