This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Exponentiation distributes over GCD. sqgcd extended to nonnegative exponents. (Contributed by Steven Nguyen, 4-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | expgcd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdnncl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
| 3 | simp3 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 4 | 2 3 | nnexpcld | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∈ ℕ ) |
| 5 | 4 | nncnd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∈ ℂ ) |
| 6 | 5 | mulridd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) · 1 ) = ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) |
| 7 | nnexpcl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℕ ) | |
| 8 | 7 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℕ ) |
| 9 | 8 | nnzd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℤ ) |
| 10 | nnexpcl | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℕ ) | |
| 11 | 10 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℕ ) |
| 12 | 11 | nnzd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 ↑ 𝑁 ) ∈ ℤ ) |
| 13 | simpl | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℕ ) | |
| 14 | 13 | nnzd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 15 | simpr | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℕ ) | |
| 16 | 15 | nnzd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
| 17 | gcddvds | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) | |
| 18 | 14 16 17 | syl2anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
| 19 | 18 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
| 20 | 19 | simpld | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
| 21 | 2 | nnzd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
| 22 | simp1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℕ ) | |
| 23 | 22 | nnzd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℤ ) |
| 24 | dvdsexpim | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐴 ↑ 𝑁 ) ) ) | |
| 25 | 21 23 3 24 | syl3anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐴 ↑ 𝑁 ) ) ) |
| 26 | 20 25 | mpd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐴 ↑ 𝑁 ) ) |
| 27 | 19 | simprd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
| 28 | simp2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ∈ ℕ ) | |
| 29 | 28 | nnzd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ∈ ℤ ) |
| 30 | dvdsexpim | ⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) | |
| 31 | 21 29 3 30 | syl3anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) |
| 32 | 27 31 | mpd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) |
| 33 | gcddiv | ⊢ ( ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℤ ∧ ( 𝐵 ↑ 𝑁 ) ∈ ℤ ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∈ ℕ ) ∧ ( ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐴 ↑ 𝑁 ) ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∥ ( 𝐵 ↑ 𝑁 ) ) ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) = ( ( ( 𝐴 ↑ 𝑁 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) gcd ( ( 𝐵 ↑ 𝑁 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) ) ) | |
| 34 | 9 12 4 26 32 33 | syl32anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) = ( ( ( 𝐴 ↑ 𝑁 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) gcd ( ( 𝐵 ↑ 𝑁 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) ) ) |
| 35 | nncn | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) | |
| 36 | 35 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
| 37 | 2 | nncnd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
| 38 | 2 | nnne0d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
| 39 | 36 37 38 3 | expdivd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) ) |
| 40 | nncn | ⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) | |
| 41 | 40 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ∈ ℂ ) |
| 42 | 41 37 38 3 | expdivd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) = ( ( 𝐵 ↑ 𝑁 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) ) |
| 43 | 39 42 | oveq12d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) gcd ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) ) = ( ( ( 𝐴 ↑ 𝑁 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) gcd ( ( 𝐵 ↑ 𝑁 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) ) ) |
| 44 | gcddiv | ⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℕ ) ∧ ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) | |
| 45 | 23 29 2 19 44 | syl31anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
| 46 | 37 38 | dividd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ) |
| 47 | 45 46 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |
| 48 | divgcdnn | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) | |
| 49 | 22 29 48 | syl2anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
| 50 | 49 | nnnn0d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ0 ) |
| 51 | divgcdnnr | ⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐴 ∈ ℤ ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) | |
| 52 | 28 23 51 | syl2anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
| 53 | 52 | nnnn0d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ0 ) |
| 54 | nn0rppwr | ⊢ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ0 ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) gcd ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) ) = 1 ) ) | |
| 55 | 50 53 3 54 | syl3anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) gcd ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) ) = 1 ) ) |
| 56 | 47 55 | mpd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) gcd ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 𝑁 ) ) = 1 ) |
| 57 | 34 43 56 | 3eqtr2d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) = 1 ) |
| 58 | gcdnncl | ⊢ ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℕ ∧ ( 𝐵 ↑ 𝑁 ) ∈ ℕ ) → ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ∈ ℕ ) | |
| 59 | 58 | nncnd | ⊢ ( ( ( 𝐴 ↑ 𝑁 ) ∈ ℕ ∧ ( 𝐵 ↑ 𝑁 ) ∈ ℕ ) → ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ∈ ℂ ) |
| 60 | 8 11 59 | syl2anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ∈ ℂ ) |
| 61 | 4 | nnne0d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ≠ 0 ) |
| 62 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 63 | divmul | ⊢ ( ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∈ ℂ ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ≠ 0 ) ) → ( ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) = 1 ↔ ( ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) · 1 ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) ) | |
| 64 | 62 63 | mp3an2 | ⊢ ( ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ∈ ℂ ∧ ( ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ∈ ℂ ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ≠ 0 ) ) → ( ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) = 1 ↔ ( ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) · 1 ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) ) |
| 65 | 60 5 61 64 | syl12anc | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) ) = 1 ↔ ( ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) · 1 ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) ) |
| 66 | 57 65 | mpbid | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) · 1 ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) |
| 67 | 6 66 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 gcd 𝐵 ) ↑ 𝑁 ) = ( ( 𝐴 ↑ 𝑁 ) gcd ( 𝐵 ↑ 𝑁 ) ) ) |