This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzoaddel | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ( ( 𝐵 + 𝐷 ) ..^ ( 𝐶 + 𝐷 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoel1 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ∈ ℤ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ∈ ℤ ) |
| 3 | 2 | zred | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ∈ ℝ ) |
| 4 | elfzoelz | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐴 ∈ ℤ ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
| 6 | 5 | zred | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐴 ∈ ℝ ) |
| 7 | simpr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐷 ∈ ℤ ) | |
| 8 | 7 | zred | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐷 ∈ ℝ ) |
| 9 | elfzole1 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ≤ 𝐴 ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐵 ≤ 𝐴 ) |
| 11 | 3 6 8 10 | leadd1dd | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐵 + 𝐷 ) ≤ ( 𝐴 + 𝐷 ) ) |
| 12 | elfzoel2 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐶 ∈ ℤ ) | |
| 13 | 12 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐶 ∈ ℤ ) |
| 14 | 13 | zred | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐶 ∈ ℝ ) |
| 15 | elfzolt2 | ⊢ ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐴 < 𝐶 ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → 𝐴 < 𝐶 ) |
| 17 | 6 14 8 16 | ltadd1dd | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) < ( 𝐶 + 𝐷 ) ) |
| 18 | zaddcl | ⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ℤ ) | |
| 19 | 4 18 | sylan | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ℤ ) |
| 20 | zaddcl | ⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝐵 + 𝐷 ) ∈ ℤ ) | |
| 21 | 1 20 | sylan | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐵 + 𝐷 ) ∈ ℤ ) |
| 22 | zaddcl | ⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ ) → ( 𝐶 + 𝐷 ) ∈ ℤ ) | |
| 23 | 12 22 | sylan | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐶 + 𝐷 ) ∈ ℤ ) |
| 24 | elfzo | ⊢ ( ( ( 𝐴 + 𝐷 ) ∈ ℤ ∧ ( 𝐵 + 𝐷 ) ∈ ℤ ∧ ( 𝐶 + 𝐷 ) ∈ ℤ ) → ( ( 𝐴 + 𝐷 ) ∈ ( ( 𝐵 + 𝐷 ) ..^ ( 𝐶 + 𝐷 ) ) ↔ ( ( 𝐵 + 𝐷 ) ≤ ( 𝐴 + 𝐷 ) ∧ ( 𝐴 + 𝐷 ) < ( 𝐶 + 𝐷 ) ) ) ) | |
| 25 | 19 21 23 24 | syl3anc | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( ( 𝐴 + 𝐷 ) ∈ ( ( 𝐵 + 𝐷 ) ..^ ( 𝐶 + 𝐷 ) ) ↔ ( ( 𝐵 + 𝐷 ) ≤ ( 𝐴 + 𝐷 ) ∧ ( 𝐴 + 𝐷 ) < ( 𝐶 + 𝐷 ) ) ) ) |
| 26 | 11 17 25 | mpbir2and | ⊢ ( ( 𝐴 ∈ ( 𝐵 ..^ 𝐶 ) ∧ 𝐷 ∈ ℤ ) → ( 𝐴 + 𝐷 ) ∈ ( ( 𝐵 + 𝐷 ) ..^ ( 𝐶 + 𝐷 ) ) ) |