This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on NN0 restricted to the modulo function I and the constant functions ( GK ) is a magma. (Contributed by AV, 14-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | ||
| smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | ||
| smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | ||
| smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | ||
| smndex1mgm.s | ⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) | ||
| Assertion | smndex1mgm | ⊢ 𝑆 ∈ Mgm |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | |
| 4 | smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | |
| 5 | smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | |
| 6 | smndex1mgm.s | ⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) | |
| 7 | 1 2 3 4 5 | smndex1basss | ⊢ 𝐵 ⊆ ( Base ‘ 𝑀 ) |
| 8 | ssel | ⊢ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) → ( 𝑎 ∈ 𝐵 → 𝑎 ∈ ( Base ‘ 𝑀 ) ) ) | |
| 9 | ssel | ⊢ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) → ( 𝑏 ∈ 𝐵 → 𝑏 ∈ ( Base ‘ 𝑀 ) ) ) | |
| 10 | 8 9 | anim12d | ⊢ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) → ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) ) ) |
| 11 | 7 10 | ax-mp | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) ) |
| 12 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 13 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 14 | 1 12 13 | efmndov | ⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑀 ) ∧ 𝑏 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝑎 ∘ 𝑏 ) ) |
| 15 | 11 14 | syl | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) = ( 𝑎 ∘ 𝑏 ) ) |
| 16 | simpl | ⊢ ( ( 𝑎 = 𝐼 ∧ 𝑏 = 𝐼 ) → 𝑎 = 𝐼 ) | |
| 17 | simpr | ⊢ ( ( 𝑎 = 𝐼 ∧ 𝑏 = 𝐼 ) → 𝑏 = 𝐼 ) | |
| 18 | 16 17 | coeq12d | ⊢ ( ( 𝑎 = 𝐼 ∧ 𝑏 = 𝐼 ) → ( 𝑎 ∘ 𝑏 ) = ( 𝐼 ∘ 𝐼 ) ) |
| 19 | 1 2 3 | smndex1iidm | ⊢ ( 𝐼 ∘ 𝐼 ) = 𝐼 |
| 20 | 18 19 | eqtrdi | ⊢ ( ( 𝑎 = 𝐼 ∧ 𝑏 = 𝐼 ) → ( 𝑎 ∘ 𝑏 ) = 𝐼 ) |
| 21 | 20 | orcd | ⊢ ( ( 𝑎 = 𝐼 ∧ 𝑏 = 𝐼 ) → ( ( 𝑎 ∘ 𝑏 ) = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 22 | 21 | ex | ⊢ ( 𝑎 = 𝐼 → ( 𝑏 = 𝐼 → ( ( 𝑎 ∘ 𝑏 ) = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 23 | simpll | ⊢ ( ( ( 𝑎 = 𝐼 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑏 = ( 𝐺 ‘ 𝑘 ) ) → 𝑎 = 𝐼 ) | |
| 24 | simpr | ⊢ ( ( ( 𝑎 = 𝐼 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑏 = ( 𝐺 ‘ 𝑘 ) ) → 𝑏 = ( 𝐺 ‘ 𝑘 ) ) | |
| 25 | 23 24 | coeq12d | ⊢ ( ( ( 𝑎 = 𝐼 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑏 = ( 𝐺 ‘ 𝑘 ) ) → ( 𝑎 ∘ 𝑏 ) = ( 𝐼 ∘ ( 𝐺 ‘ 𝑘 ) ) ) |
| 26 | 1 2 3 4 | smndex1igid | ⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( 𝐼 ∘ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐺 ‘ 𝑘 ) ) |
| 27 | 26 | ad2antlr | ⊢ ( ( ( 𝑎 = 𝐼 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑏 = ( 𝐺 ‘ 𝑘 ) ) → ( 𝐼 ∘ ( 𝐺 ‘ 𝑘 ) ) = ( 𝐺 ‘ 𝑘 ) ) |
| 28 | 25 27 | eqtrd | ⊢ ( ( ( 𝑎 = 𝐼 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑏 = ( 𝐺 ‘ 𝑘 ) ) → ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 29 | 28 | ex | ⊢ ( ( 𝑎 = 𝐼 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑏 = ( 𝐺 ‘ 𝑘 ) → ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 30 | 29 | reximdva | ⊢ ( 𝑎 = 𝐼 → ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑘 ) → ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 31 | 30 | imp | ⊢ ( ( 𝑎 = 𝐼 ∧ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑘 ) ) → ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 32 | 31 | olcd | ⊢ ( ( 𝑎 = 𝐼 ∧ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑘 ) ) → ( ( 𝑎 ∘ 𝑏 ) = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 33 | 32 | ex | ⊢ ( 𝑎 = 𝐼 → ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑘 ) → ( ( 𝑎 ∘ 𝑏 ) = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 34 | 22 33 | jaod | ⊢ ( 𝑎 = 𝐼 → ( ( 𝑏 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑘 ) ) → ( ( 𝑎 ∘ 𝑏 ) = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 35 | simpr | ⊢ ( ( ( 𝑏 = 𝐼 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑎 = ( 𝐺 ‘ 𝑘 ) ) → 𝑎 = ( 𝐺 ‘ 𝑘 ) ) | |
| 36 | simpll | ⊢ ( ( ( 𝑏 = 𝐼 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑎 = ( 𝐺 ‘ 𝑘 ) ) → 𝑏 = 𝐼 ) | |
| 37 | 35 36 | coeq12d | ⊢ ( ( ( 𝑏 = 𝐼 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑎 = ( 𝐺 ‘ 𝑘 ) ) → ( 𝑎 ∘ 𝑏 ) = ( ( 𝐺 ‘ 𝑘 ) ∘ 𝐼 ) ) |
| 38 | 1 2 3 | smndex1ibas | ⊢ 𝐼 ∈ ( Base ‘ 𝑀 ) |
| 39 | 1 2 3 4 | smndex1gid | ⊢ ( ( 𝐼 ∈ ( Base ‘ 𝑀 ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ 𝑘 ) ∘ 𝐼 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 40 | 38 39 | mpan | ⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( ( 𝐺 ‘ 𝑘 ) ∘ 𝐼 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 41 | 40 | ad2antlr | ⊢ ( ( ( 𝑏 = 𝐼 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑎 = ( 𝐺 ‘ 𝑘 ) ) → ( ( 𝐺 ‘ 𝑘 ) ∘ 𝐼 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 42 | 37 41 | eqtrd | ⊢ ( ( ( 𝑏 = 𝐼 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑎 = ( 𝐺 ‘ 𝑘 ) ) → ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 43 | 42 | ex | ⊢ ( ( 𝑏 = 𝐼 ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑎 = ( 𝐺 ‘ 𝑘 ) → ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 44 | 43 | reximdva | ⊢ ( 𝑏 = 𝐼 → ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) → ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 45 | 44 | imp | ⊢ ( ( 𝑏 = 𝐼 ∧ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) ) → ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 46 | 45 | olcd | ⊢ ( ( 𝑏 = 𝐼 ∧ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) ) → ( ( 𝑎 ∘ 𝑏 ) = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 47 | 46 | expcom | ⊢ ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) → ( 𝑏 = 𝐼 → ( ( 𝑎 ∘ 𝑏 ) = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 48 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) ) | |
| 49 | 48 | eqeq2d | ⊢ ( 𝑘 = 𝑚 → ( 𝑏 = ( 𝐺 ‘ 𝑘 ) ↔ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) ) |
| 50 | 49 | cbvrexvw | ⊢ ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑘 ) ↔ ∃ 𝑚 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑚 ) ) |
| 51 | simpr | ⊢ ( ( ( ( 𝑚 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑎 = ( 𝐺 ‘ 𝑘 ) ) → 𝑎 = ( 𝐺 ‘ 𝑘 ) ) | |
| 52 | simpllr | ⊢ ( ( ( ( 𝑚 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑎 = ( 𝐺 ‘ 𝑘 ) ) → 𝑏 = ( 𝐺 ‘ 𝑚 ) ) | |
| 53 | 51 52 | coeq12d | ⊢ ( ( ( ( 𝑚 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑎 = ( 𝐺 ‘ 𝑘 ) ) → ( 𝑎 ∘ 𝑏 ) = ( ( 𝐺 ‘ 𝑘 ) ∘ ( 𝐺 ‘ 𝑚 ) ) ) |
| 54 | 1 2 3 4 | smndex1gbas | ⊢ ( 𝑚 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝑚 ) ∈ ( Base ‘ 𝑀 ) ) |
| 55 | 1 2 3 4 | smndex1gid | ⊢ ( ( ( 𝐺 ‘ 𝑚 ) ∈ ( Base ‘ 𝑀 ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ 𝑘 ) ∘ ( 𝐺 ‘ 𝑚 ) ) = ( 𝐺 ‘ 𝑘 ) ) |
| 56 | 54 55 | sylan | ⊢ ( ( 𝑚 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ 𝑘 ) ∘ ( 𝐺 ‘ 𝑚 ) ) = ( 𝐺 ‘ 𝑘 ) ) |
| 57 | 56 | ad4ant13 | ⊢ ( ( ( ( 𝑚 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑎 = ( 𝐺 ‘ 𝑘 ) ) → ( ( 𝐺 ‘ 𝑘 ) ∘ ( 𝐺 ‘ 𝑚 ) ) = ( 𝐺 ‘ 𝑘 ) ) |
| 58 | 53 57 | eqtrd | ⊢ ( ( ( ( 𝑚 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑎 = ( 𝐺 ‘ 𝑘 ) ) → ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 59 | 58 | ex | ⊢ ( ( ( 𝑚 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) ∧ 𝑘 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑎 = ( 𝐺 ‘ 𝑘 ) → ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 60 | 59 | reximdva | ⊢ ( ( 𝑚 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑏 = ( 𝐺 ‘ 𝑚 ) ) → ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) → ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 61 | 60 | rexlimiva | ⊢ ( ∃ 𝑚 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑚 ) → ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) → ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 62 | 61 | imp | ⊢ ( ( ∃ 𝑚 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑚 ) ∧ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) ) → ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 63 | 62 | olcd | ⊢ ( ( ∃ 𝑚 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑚 ) ∧ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) ) → ( ( 𝑎 ∘ 𝑏 ) = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 64 | 63 | expcom | ⊢ ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) → ( ∃ 𝑚 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑚 ) → ( ( 𝑎 ∘ 𝑏 ) = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 65 | 50 64 | biimtrid | ⊢ ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) → ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑘 ) → ( ( 𝑎 ∘ 𝑏 ) = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 66 | 47 65 | jaod | ⊢ ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) → ( ( 𝑏 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑘 ) ) → ( ( 𝑎 ∘ 𝑏 ) = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 67 | 34 66 | jaoi | ⊢ ( ( 𝑎 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) ) → ( ( 𝑏 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑘 ) ) → ( ( 𝑎 ∘ 𝑏 ) = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 68 | 67 | imp | ⊢ ( ( ( 𝑎 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) ) ∧ ( 𝑏 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑘 ) ) ) → ( ( 𝑎 ∘ 𝑏 ) = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 69 | 5 | eleq2i | ⊢ ( 𝑎 ∈ 𝐵 ↔ 𝑎 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ) |
| 70 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 71 | 70 | sneqd | ⊢ ( 𝑛 = 𝑘 → { ( 𝐺 ‘ 𝑛 ) } = { ( 𝐺 ‘ 𝑘 ) } ) |
| 72 | 71 | cbviunv | ⊢ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } = ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } |
| 73 | 72 | uneq2i | ⊢ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) = ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) |
| 74 | 73 | eleq2i | ⊢ ( 𝑎 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ↔ 𝑎 ∈ ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ) |
| 75 | 69 74 | bitri | ⊢ ( 𝑎 ∈ 𝐵 ↔ 𝑎 ∈ ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ) |
| 76 | elun | ⊢ ( 𝑎 ∈ ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ↔ ( 𝑎 ∈ { 𝐼 } ∨ 𝑎 ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ) | |
| 77 | velsn | ⊢ ( 𝑎 ∈ { 𝐼 } ↔ 𝑎 = 𝐼 ) | |
| 78 | eliun | ⊢ ( 𝑎 ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ↔ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 ∈ { ( 𝐺 ‘ 𝑘 ) } ) | |
| 79 | velsn | ⊢ ( 𝑎 ∈ { ( 𝐺 ‘ 𝑘 ) } ↔ 𝑎 = ( 𝐺 ‘ 𝑘 ) ) | |
| 80 | 79 | rexbii | ⊢ ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 ∈ { ( 𝐺 ‘ 𝑘 ) } ↔ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) ) |
| 81 | 78 80 | bitri | ⊢ ( 𝑎 ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ↔ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) ) |
| 82 | 77 81 | orbi12i | ⊢ ( ( 𝑎 ∈ { 𝐼 } ∨ 𝑎 ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ↔ ( 𝑎 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) ) ) |
| 83 | 75 76 82 | 3bitri | ⊢ ( 𝑎 ∈ 𝐵 ↔ ( 𝑎 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) ) ) |
| 84 | 5 | eleq2i | ⊢ ( 𝑏 ∈ 𝐵 ↔ 𝑏 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ) |
| 85 | 73 | eleq2i | ⊢ ( 𝑏 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ↔ 𝑏 ∈ ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ) |
| 86 | 84 85 | bitri | ⊢ ( 𝑏 ∈ 𝐵 ↔ 𝑏 ∈ ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ) |
| 87 | elun | ⊢ ( 𝑏 ∈ ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ↔ ( 𝑏 ∈ { 𝐼 } ∨ 𝑏 ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ) | |
| 88 | velsn | ⊢ ( 𝑏 ∈ { 𝐼 } ↔ 𝑏 = 𝐼 ) | |
| 89 | eliun | ⊢ ( 𝑏 ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ↔ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } ) | |
| 90 | velsn | ⊢ ( 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } ↔ 𝑏 = ( 𝐺 ‘ 𝑘 ) ) | |
| 91 | 90 | rexbii | ⊢ ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } ↔ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑘 ) ) |
| 92 | 89 91 | bitri | ⊢ ( 𝑏 ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ↔ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑘 ) ) |
| 93 | 88 92 | orbi12i | ⊢ ( ( 𝑏 ∈ { 𝐼 } ∨ 𝑏 ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ↔ ( 𝑏 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑘 ) ) ) |
| 94 | 86 87 93 | 3bitri | ⊢ ( 𝑏 ∈ 𝐵 ↔ ( 𝑏 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑘 ) ) ) |
| 95 | 83 94 | anbi12i | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) ↔ ( ( 𝑎 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑎 = ( 𝐺 ‘ 𝑘 ) ) ∧ ( 𝑏 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 = ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 96 | 5 | eleq2i | ⊢ ( ( 𝑎 ∘ 𝑏 ) ∈ 𝐵 ↔ ( 𝑎 ∘ 𝑏 ) ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ) |
| 97 | 73 | eleq2i | ⊢ ( ( 𝑎 ∘ 𝑏 ) ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ↔ ( 𝑎 ∘ 𝑏 ) ∈ ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ) |
| 98 | 96 97 | bitri | ⊢ ( ( 𝑎 ∘ 𝑏 ) ∈ 𝐵 ↔ ( 𝑎 ∘ 𝑏 ) ∈ ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ) |
| 99 | elun | ⊢ ( ( 𝑎 ∘ 𝑏 ) ∈ ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ↔ ( ( 𝑎 ∘ 𝑏 ) ∈ { 𝐼 } ∨ ( 𝑎 ∘ 𝑏 ) ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ) | |
| 100 | vex | ⊢ 𝑎 ∈ V | |
| 101 | vex | ⊢ 𝑏 ∈ V | |
| 102 | 100 101 | coex | ⊢ ( 𝑎 ∘ 𝑏 ) ∈ V |
| 103 | 102 | elsn | ⊢ ( ( 𝑎 ∘ 𝑏 ) ∈ { 𝐼 } ↔ ( 𝑎 ∘ 𝑏 ) = 𝐼 ) |
| 104 | eliun | ⊢ ( ( 𝑎 ∘ 𝑏 ) ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ↔ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) ∈ { ( 𝐺 ‘ 𝑘 ) } ) | |
| 105 | 102 | elsn | ⊢ ( ( 𝑎 ∘ 𝑏 ) ∈ { ( 𝐺 ‘ 𝑘 ) } ↔ ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 106 | 105 | rexbii | ⊢ ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) ∈ { ( 𝐺 ‘ 𝑘 ) } ↔ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 107 | 104 106 | bitri | ⊢ ( ( 𝑎 ∘ 𝑏 ) ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ↔ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 108 | 103 107 | orbi12i | ⊢ ( ( ( 𝑎 ∘ 𝑏 ) ∈ { 𝐼 } ∨ ( 𝑎 ∘ 𝑏 ) ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ↔ ( ( 𝑎 ∘ 𝑏 ) = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 109 | 98 99 108 | 3bitri | ⊢ ( ( 𝑎 ∘ 𝑏 ) ∈ 𝐵 ↔ ( ( 𝑎 ∘ 𝑏 ) = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) ( 𝑎 ∘ 𝑏 ) = ( 𝐺 ‘ 𝑘 ) ) ) |
| 110 | 68 95 109 | 3imtr4i | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ∘ 𝑏 ) ∈ 𝐵 ) |
| 111 | 15 110 | eqeltrd | ⊢ ( ( 𝑎 ∈ 𝐵 ∧ 𝑏 ∈ 𝐵 ) → ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) |
| 112 | 111 | rgen2 | ⊢ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 |
| 113 | 6 | ovexi | ⊢ 𝑆 ∈ V |
| 114 | 1 2 3 4 5 6 | smndex1bas | ⊢ ( Base ‘ 𝑆 ) = 𝐵 |
| 115 | 114 | eqcomi | ⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 116 | 115 | fvexi | ⊢ 𝐵 ∈ V |
| 117 | 6 13 | ressplusg | ⊢ ( 𝐵 ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑆 ) ) |
| 118 | 116 117 | ax-mp | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑆 ) |
| 119 | 115 118 | ismgm | ⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ Mgm ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) ) |
| 120 | 113 119 | ax-mp | ⊢ ( 𝑆 ∈ Mgm ↔ ∀ 𝑎 ∈ 𝐵 ∀ 𝑏 ∈ 𝐵 ( 𝑎 ( +g ‘ 𝑀 ) 𝑏 ) ∈ 𝐵 ) |
| 121 | 112 120 | mpbir | ⊢ 𝑆 ∈ Mgm |