This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The constant functions ( GK ) are endofunctions on NN0 . (Contributed by AV, 12-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | ||
| smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | ||
| smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | ||
| Assertion | smndex1gbas | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) ∈ ( Base ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | |
| 4 | smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | |
| 5 | elfzonn0 | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐾 ∈ ℕ0 ) | |
| 6 | 5 | adantr | ⊢ ( ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑥 ∈ ℕ0 ) → 𝐾 ∈ ℕ0 ) |
| 7 | 6 | ralrimiva | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ∀ 𝑥 ∈ ℕ0 𝐾 ∈ ℕ0 ) |
| 8 | eqid | ⊢ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) | |
| 9 | 8 | fmpt | ⊢ ( ∀ 𝑥 ∈ ℕ0 𝐾 ∈ ℕ0 ↔ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) : ℕ0 ⟶ ℕ0 ) |
| 10 | 7 9 | sylib | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) : ℕ0 ⟶ ℕ0 ) |
| 11 | nn0ex | ⊢ ℕ0 ∈ V | |
| 12 | 11 11 | elmap | ⊢ ( ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ ( ℕ0 ↑m ℕ0 ) ↔ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) : ℕ0 ⟶ ℕ0 ) |
| 13 | 10 12 | sylibr | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ ( ℕ0 ↑m ℕ0 ) ) |
| 14 | 4 | a1i | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) ) |
| 15 | id | ⊢ ( 𝑛 = 𝐾 → 𝑛 = 𝐾 ) | |
| 16 | 15 | mpteq2dv | ⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑛 = 𝐾 ) → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 18 | id | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐾 ∈ ( 0 ..^ 𝑁 ) ) | |
| 19 | 11 | mptex | ⊢ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ V |
| 20 | 19 | a1i | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ V ) |
| 21 | 14 17 18 20 | fvmptd | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 22 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 23 | 1 22 | efmndbas | ⊢ ( Base ‘ 𝑀 ) = ( ℕ0 ↑m ℕ0 ) |
| 24 | 23 | a1i | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( Base ‘ 𝑀 ) = ( ℕ0 ↑m ℕ0 ) ) |
| 25 | 13 21 24 | 3eltr4d | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) ∈ ( Base ‘ 𝑀 ) ) |