This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a magma". (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismgm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| ismgm.o | ⊢ ⚬ = ( +g ‘ 𝑀 ) | ||
| Assertion | ismgm | ⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismgm.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | ismgm.o | ⊢ ⚬ = ( +g ‘ 𝑀 ) | |
| 3 | fvexd | ⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) ∈ V ) | |
| 4 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = ( Base ‘ 𝑀 ) ) | |
| 5 | 4 1 | eqtr4di | ⊢ ( 𝑚 = 𝑀 → ( Base ‘ 𝑚 ) = 𝐵 ) |
| 6 | fvexd | ⊢ ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑚 ) ∈ V ) | |
| 7 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( +g ‘ 𝑚 ) = ( +g ‘ 𝑀 ) ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑚 ) = ( +g ‘ 𝑀 ) ) |
| 9 | 8 2 | eqtr4di | ⊢ ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) → ( +g ‘ 𝑚 ) = ⚬ ) |
| 10 | simplr | ⊢ ( ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → 𝑏 = 𝐵 ) | |
| 11 | oveq | ⊢ ( 𝑜 = ⚬ → ( 𝑥 𝑜 𝑦 ) = ( 𝑥 ⚬ 𝑦 ) ) | |
| 12 | 11 | adantl | ⊢ ( ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → ( 𝑥 𝑜 𝑦 ) = ( 𝑥 ⚬ 𝑦 ) ) |
| 13 | 12 10 | eleq12d | ⊢ ( ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → ( ( 𝑥 𝑜 𝑦 ) ∈ 𝑏 ↔ ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |
| 14 | 10 13 | raleqbidv | ⊢ ( ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → ( ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑜 𝑦 ) ∈ 𝑏 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |
| 15 | 10 14 | raleqbidv | ⊢ ( ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) ∧ 𝑜 = ⚬ ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑜 𝑦 ) ∈ 𝑏 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |
| 16 | 6 9 15 | sbcied2 | ⊢ ( ( 𝑚 = 𝑀 ∧ 𝑏 = 𝐵 ) → ( [ ( +g ‘ 𝑚 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑜 𝑦 ) ∈ 𝑏 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |
| 17 | 3 5 16 | sbcied2 | ⊢ ( 𝑚 = 𝑀 → ( [ ( Base ‘ 𝑚 ) / 𝑏 ] [ ( +g ‘ 𝑚 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑜 𝑦 ) ∈ 𝑏 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |
| 18 | df-mgm | ⊢ Mgm = { 𝑚 ∣ [ ( Base ‘ 𝑚 ) / 𝑏 ] [ ( +g ‘ 𝑚 ) / 𝑜 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑜 𝑦 ) ∈ 𝑏 } | |
| 19 | 17 18 | elab2g | ⊢ ( 𝑀 ∈ 𝑉 → ( 𝑀 ∈ Mgm ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ⚬ 𝑦 ) ∈ 𝐵 ) ) |