This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endofunctions on NN0 restricted to the modulo function I and the constant functions ( GK ) is a semigroup. (Contributed by AV, 14-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | ||
| smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | ||
| smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | ||
| smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | ||
| smndex1mgm.s | ⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) | ||
| Assertion | smndex1sgrp | ⊢ 𝑆 ∈ Smgrp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | |
| 4 | smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | |
| 5 | smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | |
| 6 | smndex1mgm.s | ⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) | |
| 7 | 1 2 3 4 5 6 | smndex1mgm | ⊢ 𝑆 ∈ Mgm |
| 8 | eqid | ⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) | |
| 9 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 10 | 8 9 | mgmcl | ⊢ ( ( 𝑆 ∈ Mgm ∧ 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 11 | 7 10 | mp3an1 | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) ∈ ( Base ‘ 𝑆 ) ) |
| 12 | snex | ⊢ { 𝐼 } ∈ V | |
| 13 | ovex | ⊢ ( 0 ..^ 𝑁 ) ∈ V | |
| 14 | snex | ⊢ { ( 𝐺 ‘ 𝑛 ) } ∈ V | |
| 15 | 13 14 | iunex | ⊢ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ∈ V |
| 16 | 12 15 | unex | ⊢ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ∈ V |
| 17 | 5 16 | eqeltri | ⊢ 𝐵 ∈ V |
| 18 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 19 | 6 18 | ressplusg | ⊢ ( 𝐵 ∈ V → ( +g ‘ 𝑀 ) = ( +g ‘ 𝑆 ) ) |
| 20 | 17 19 | ax-mp | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑆 ) |
| 21 | 20 | eqcomi | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑀 ) |
| 22 | 21 | oveqi | ⊢ ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) |
| 23 | 1 2 3 4 5 6 | smndex1bas | ⊢ ( Base ‘ 𝑆 ) = 𝐵 |
| 24 | 1 2 3 4 5 | smndex1basss | ⊢ 𝐵 ⊆ ( Base ‘ 𝑀 ) |
| 25 | 23 24 | eqsstri | ⊢ ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑀 ) |
| 26 | ssel | ⊢ ( ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑀 ) → ( 𝑥 ∈ ( Base ‘ 𝑆 ) → 𝑥 ∈ ( Base ‘ 𝑀 ) ) ) | |
| 27 | ssel | ⊢ ( ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑀 ) → ( 𝑦 ∈ ( Base ‘ 𝑆 ) → 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) | |
| 28 | 26 27 | anim12d | ⊢ ( ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑀 ) → ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) ) |
| 29 | 25 28 | ax-mp | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) |
| 30 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 31 | 1 30 18 | efmndov | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 32 | 29 31 | syl | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 33 | 22 32 | eqtrid | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑆 ) ∧ 𝑦 ∈ ( Base ‘ 𝑆 ) ) → ( 𝑥 ( +g ‘ 𝑆 ) 𝑦 ) = ( 𝑥 ∘ 𝑦 ) ) |
| 34 | 11 33 | symggrplem | ⊢ ( ( 𝑎 ∈ ( Base ‘ 𝑆 ) ∧ 𝑏 ∈ ( Base ‘ 𝑆 ) ∧ 𝑐 ∈ ( Base ‘ 𝑆 ) ) → ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( +g ‘ 𝑆 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑆 ) ( 𝑏 ( +g ‘ 𝑆 ) 𝑐 ) ) ) |
| 35 | 34 | rgen3 | ⊢ ∀ 𝑎 ∈ ( Base ‘ 𝑆 ) ∀ 𝑏 ∈ ( Base ‘ 𝑆 ) ∀ 𝑐 ∈ ( Base ‘ 𝑆 ) ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( +g ‘ 𝑆 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑆 ) ( 𝑏 ( +g ‘ 𝑆 ) 𝑐 ) ) |
| 36 | 8 9 | issgrp | ⊢ ( 𝑆 ∈ Smgrp ↔ ( 𝑆 ∈ Mgm ∧ ∀ 𝑎 ∈ ( Base ‘ 𝑆 ) ∀ 𝑏 ∈ ( Base ‘ 𝑆 ) ∀ 𝑐 ∈ ( Base ‘ 𝑆 ) ( ( 𝑎 ( +g ‘ 𝑆 ) 𝑏 ) ( +g ‘ 𝑆 ) 𝑐 ) = ( 𝑎 ( +g ‘ 𝑆 ) ( 𝑏 ( +g ‘ 𝑆 ) 𝑐 ) ) ) ) |
| 37 | 7 35 36 | mpbir2an | ⊢ 𝑆 ∈ Smgrp |