This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modulo function I is idempotent. (Contributed by AV, 12-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | ||
| smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | ||
| Assertion | smndex1iidm | ⊢ ( 𝐼 ∘ 𝐼 ) = 𝐼 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | |
| 4 | nn0re | ⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℝ ) | |
| 5 | nnrp | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ+ ) | |
| 6 | 2 5 | ax-mp | ⊢ 𝑁 ∈ ℝ+ |
| 7 | modabs2 | ⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑁 ∈ ℝ+ ) → ( ( 𝑦 mod 𝑁 ) mod 𝑁 ) = ( 𝑦 mod 𝑁 ) ) | |
| 8 | 4 6 7 | sylancl | ⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑦 mod 𝑁 ) mod 𝑁 ) = ( 𝑦 mod 𝑁 ) ) |
| 9 | 8 | eqcomd | ⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 mod 𝑁 ) = ( ( 𝑦 mod 𝑁 ) mod 𝑁 ) ) |
| 10 | 9 | mpteq2ia | ⊢ ( 𝑦 ∈ ℕ0 ↦ ( 𝑦 mod 𝑁 ) ) = ( 𝑦 ∈ ℕ0 ↦ ( ( 𝑦 mod 𝑁 ) mod 𝑁 ) ) |
| 11 | oveq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 mod 𝑁 ) = ( 𝑦 mod 𝑁 ) ) | |
| 12 | 11 | cbvmptv | ⊢ ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) = ( 𝑦 ∈ ℕ0 ↦ ( 𝑦 mod 𝑁 ) ) |
| 13 | 3 12 | eqtri | ⊢ 𝐼 = ( 𝑦 ∈ ℕ0 ↦ ( 𝑦 mod 𝑁 ) ) |
| 14 | nn0z | ⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) | |
| 15 | 14 | anim2i | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ0 ) → ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℤ ) ) |
| 16 | 15 | ancomd | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) |
| 17 | zmodcl | ⊢ ( ( 𝑦 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑦 mod 𝑁 ) ∈ ℕ0 ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 mod 𝑁 ) ∈ ℕ0 ) |
| 19 | 13 | a1i | ⊢ ( 𝑁 ∈ ℕ → 𝐼 = ( 𝑦 ∈ ℕ0 ↦ ( 𝑦 mod 𝑁 ) ) ) |
| 20 | 3 | a1i | ⊢ ( 𝑁 ∈ ℕ → 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) ) |
| 21 | oveq1 | ⊢ ( 𝑥 = ( 𝑦 mod 𝑁 ) → ( 𝑥 mod 𝑁 ) = ( ( 𝑦 mod 𝑁 ) mod 𝑁 ) ) | |
| 22 | 18 19 20 21 | fmptco | ⊢ ( 𝑁 ∈ ℕ → ( 𝐼 ∘ 𝐼 ) = ( 𝑦 ∈ ℕ0 ↦ ( ( 𝑦 mod 𝑁 ) mod 𝑁 ) ) ) |
| 23 | 2 22 | ax-mp | ⊢ ( 𝐼 ∘ 𝐼 ) = ( 𝑦 ∈ ℕ0 ↦ ( ( 𝑦 mod 𝑁 ) mod 𝑁 ) ) |
| 24 | 10 13 23 | 3eqtr4ri | ⊢ ( 𝐼 ∘ 𝐼 ) = 𝐼 |