This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modulo function I is an endofunction on NN0 . (Contributed by AV, 12-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | ||
| smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | ||
| Assertion | smndex1ibas | ⊢ 𝐼 ∈ ( Base ‘ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | |
| 4 | eqid | ⊢ ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | |
| 5 | nn0z | ⊢ ( 𝑥 ∈ ℕ0 → 𝑥 ∈ ℤ ) | |
| 6 | 2 | a1i | ⊢ ( 𝑥 ∈ ℕ0 → 𝑁 ∈ ℕ ) |
| 7 | 5 6 | zmodcld | ⊢ ( 𝑥 ∈ ℕ0 → ( 𝑥 mod 𝑁 ) ∈ ℕ0 ) |
| 8 | 4 7 | fmpti | ⊢ ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) : ℕ0 ⟶ ℕ0 |
| 9 | nn0ex | ⊢ ℕ0 ∈ V | |
| 10 | 9 9 | elmap | ⊢ ( ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) ∈ ( ℕ0 ↑m ℕ0 ) ↔ ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) : ℕ0 ⟶ ℕ0 ) |
| 11 | 8 10 | mpbir | ⊢ ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) ∈ ( ℕ0 ↑m ℕ0 ) |
| 12 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 13 | 1 12 | efmndbas | ⊢ ( Base ‘ 𝑀 ) = ( ℕ0 ↑m ℕ0 ) |
| 14 | 11 3 13 | 3eltr4i | ⊢ 𝐼 ∈ ( Base ‘ 𝑀 ) |