This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of the monoid of endofunctions on NN0 restricted to the modulo function I and the constant functions ( GK ) . (Contributed by AV, 12-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | ||
| smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | ||
| smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | ||
| smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | ||
| smndex1mgm.s | ⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) | ||
| Assertion | smndex1bas | ⊢ ( Base ‘ 𝑆 ) = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | |
| 4 | smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | |
| 5 | smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | |
| 6 | smndex1mgm.s | ⊢ 𝑆 = ( 𝑀 ↾s 𝐵 ) | |
| 7 | 1 2 3 4 5 | smndex1basss | ⊢ 𝐵 ⊆ ( Base ‘ 𝑀 ) |
| 8 | dfss | ⊢ ( 𝐵 ⊆ ( Base ‘ 𝑀 ) ↔ 𝐵 = ( 𝐵 ∩ ( Base ‘ 𝑀 ) ) ) | |
| 9 | 7 8 | mpbi | ⊢ 𝐵 = ( 𝐵 ∩ ( Base ‘ 𝑀 ) ) |
| 10 | snex | ⊢ { 𝐼 } ∈ V | |
| 11 | ovex | ⊢ ( 0 ..^ 𝑁 ) ∈ V | |
| 12 | snex | ⊢ { ( 𝐺 ‘ 𝑛 ) } ∈ V | |
| 13 | 11 12 | iunex | ⊢ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ∈ V |
| 14 | 10 13 | unex | ⊢ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ∈ V |
| 15 | 5 14 | eqeltri | ⊢ 𝐵 ∈ V |
| 16 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 17 | 6 16 | ressbas | ⊢ ( 𝐵 ∈ V → ( 𝐵 ∩ ( Base ‘ 𝑀 ) ) = ( Base ‘ 𝑆 ) ) |
| 18 | 15 17 | ax-mp | ⊢ ( 𝐵 ∩ ( Base ‘ 𝑀 ) ) = ( Base ‘ 𝑆 ) |
| 19 | 9 18 | eqtr2i | ⊢ ( Base ‘ 𝑆 ) = 𝐵 |