This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The modulo function I and the constant functions ( GK ) are endofunctions on NN0 . (Contributed by AV, 12-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | ||
| smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | ||
| smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | ||
| smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | ||
| Assertion | smndex1basss | ⊢ 𝐵 ⊆ ( Base ‘ 𝑀 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | |
| 4 | smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | |
| 5 | smndex1mgm.b | ⊢ 𝐵 = ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) | |
| 6 | 5 | eleq2i | ⊢ ( 𝑏 ∈ 𝐵 ↔ 𝑏 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ) |
| 7 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 8 | 7 | sneqd | ⊢ ( 𝑛 = 𝑘 → { ( 𝐺 ‘ 𝑛 ) } = { ( 𝐺 ‘ 𝑘 ) } ) |
| 9 | 8 | cbviunv | ⊢ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } = ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } |
| 10 | 9 | uneq2i | ⊢ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) = ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) |
| 11 | 10 | eleq2i | ⊢ ( 𝑏 ∈ ( { 𝐼 } ∪ ∪ 𝑛 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑛 ) } ) ↔ 𝑏 ∈ ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ) |
| 12 | 6 11 | bitri | ⊢ ( 𝑏 ∈ 𝐵 ↔ 𝑏 ∈ ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ) |
| 13 | elun | ⊢ ( 𝑏 ∈ ( { 𝐼 } ∪ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ↔ ( 𝑏 ∈ { 𝐼 } ∨ 𝑏 ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ) | |
| 14 | velsn | ⊢ ( 𝑏 ∈ { 𝐼 } ↔ 𝑏 = 𝐼 ) | |
| 15 | eliun | ⊢ ( 𝑏 ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ↔ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } ) | |
| 16 | 14 15 | orbi12i | ⊢ ( ( 𝑏 ∈ { 𝐼 } ∨ 𝑏 ∈ ∪ 𝑘 ∈ ( 0 ..^ 𝑁 ) { ( 𝐺 ‘ 𝑘 ) } ) ↔ ( 𝑏 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } ) ) |
| 17 | 12 13 16 | 3bitri | ⊢ ( 𝑏 ∈ 𝐵 ↔ ( 𝑏 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } ) ) |
| 18 | 1 2 3 | smndex1ibas | ⊢ 𝐼 ∈ ( Base ‘ 𝑀 ) |
| 19 | eleq1 | ⊢ ( 𝑏 = 𝐼 → ( 𝑏 ∈ ( Base ‘ 𝑀 ) ↔ 𝐼 ∈ ( Base ‘ 𝑀 ) ) ) | |
| 20 | 18 19 | mpbiri | ⊢ ( 𝑏 = 𝐼 → 𝑏 ∈ ( Base ‘ 𝑀 ) ) |
| 21 | 1 2 3 4 | smndex1gbas | ⊢ ( 𝑘 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝑘 ) ∈ ( Base ‘ 𝑀 ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } ) → ( 𝐺 ‘ 𝑘 ) ∈ ( Base ‘ 𝑀 ) ) |
| 23 | elsni | ⊢ ( 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } → 𝑏 = ( 𝐺 ‘ 𝑘 ) ) | |
| 24 | 23 | eleq1d | ⊢ ( 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } → ( 𝑏 ∈ ( Base ‘ 𝑀 ) ↔ ( 𝐺 ‘ 𝑘 ) ∈ ( Base ‘ 𝑀 ) ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } ) → ( 𝑏 ∈ ( Base ‘ 𝑀 ) ↔ ( 𝐺 ‘ 𝑘 ) ∈ ( Base ‘ 𝑀 ) ) ) |
| 26 | 22 25 | mpbird | ⊢ ( ( 𝑘 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } ) → 𝑏 ∈ ( Base ‘ 𝑀 ) ) |
| 27 | 26 | rexlimiva | ⊢ ( ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } → 𝑏 ∈ ( Base ‘ 𝑀 ) ) |
| 28 | 20 27 | jaoi | ⊢ ( ( 𝑏 = 𝐼 ∨ ∃ 𝑘 ∈ ( 0 ..^ 𝑁 ) 𝑏 ∈ { ( 𝐺 ‘ 𝑘 ) } ) → 𝑏 ∈ ( Base ‘ 𝑀 ) ) |
| 29 | 17 28 | sylbi | ⊢ ( 𝑏 ∈ 𝐵 → 𝑏 ∈ ( Base ‘ 𝑀 ) ) |
| 30 | 29 | ssriv | ⊢ 𝐵 ⊆ ( Base ‘ 𝑀 ) |