This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The composition of a constant function ( GK ) with another endofunction on NN0 results in ( GK ) itself. (Contributed by AV, 14-Feb-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | ||
| smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | ||
| smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | ||
| Assertion | smndex1gid | ⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ 𝐾 ) ∘ 𝐹 ) = ( 𝐺 ‘ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.m | ⊢ 𝑀 = ( EndoFMnd ‘ ℕ0 ) | |
| 2 | smndex1ibas.n | ⊢ 𝑁 ∈ ℕ | |
| 3 | smndex1ibas.i | ⊢ 𝐼 = ( 𝑥 ∈ ℕ0 ↦ ( 𝑥 mod 𝑁 ) ) | |
| 4 | smndex1ibas.g | ⊢ 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) | |
| 5 | 4 | a1i | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐺 = ( 𝑛 ∈ ( 0 ..^ 𝑁 ) ↦ ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) ) ) |
| 6 | id | ⊢ ( 𝑛 = 𝐾 → 𝑛 = 𝐾 ) | |
| 7 | 6 | mpteq2dv | ⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑛 = 𝐾 ) → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 9 | id | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → 𝐾 ∈ ( 0 ..^ 𝑁 ) ) | |
| 10 | nn0ex | ⊢ ℕ0 ∈ V | |
| 11 | 10 | mptex | ⊢ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ V |
| 12 | 11 | a1i | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ∈ V ) |
| 13 | 5 8 9 12 | fvmptd | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 14 | 13 | adantl | ⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) ) |
| 16 | eqidd | ⊢ ( ( ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℕ0 ) ∧ 𝑥 = ( 𝐹 ‘ 𝑦 ) ) → 𝐾 = 𝐾 ) | |
| 17 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 18 | 1 17 | efmndbasf | ⊢ ( 𝐹 ∈ ( Base ‘ 𝑀 ) → 𝐹 : ℕ0 ⟶ ℕ0 ) |
| 19 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ0 ⟶ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) | |
| 20 | 19 | ex | ⊢ ( 𝐹 : ℕ0 ⟶ ℕ0 → ( 𝑦 ∈ ℕ0 → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) ) |
| 21 | 18 20 | syl | ⊢ ( 𝐹 ∈ ( Base ‘ 𝑀 ) → ( 𝑦 ∈ ℕ0 → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) ) |
| 22 | 21 | adantr | ⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑦 ∈ ℕ0 → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) ) |
| 23 | 22 | imp | ⊢ ( ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑦 ) ∈ ℕ0 ) |
| 24 | simplr | ⊢ ( ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℕ0 ) → 𝐾 ∈ ( 0 ..^ 𝑁 ) ) | |
| 25 | 15 16 23 24 | fvmptd | ⊢ ( ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐺 ‘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑦 ) ) = 𝐾 ) |
| 26 | 25 | mpteq2dva | ⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝑦 ∈ ℕ0 ↦ ( ( 𝐺 ‘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ) |
| 27 | 1 2 3 4 | smndex1gbas | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) ∈ ( Base ‘ 𝑀 ) ) |
| 28 | 1 17 | efmndbasf | ⊢ ( ( 𝐺 ‘ 𝐾 ) ∈ ( Base ‘ 𝑀 ) → ( 𝐺 ‘ 𝐾 ) : ℕ0 ⟶ ℕ0 ) |
| 29 | 27 28 | syl | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) : ℕ0 ⟶ ℕ0 ) |
| 30 | fcompt | ⊢ ( ( ( 𝐺 ‘ 𝐾 ) : ℕ0 ⟶ ℕ0 ∧ 𝐹 : ℕ0 ⟶ ℕ0 ) → ( ( 𝐺 ‘ 𝐾 ) ∘ 𝐹 ) = ( 𝑦 ∈ ℕ0 ↦ ( ( 𝐺 ‘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) | |
| 31 | 29 18 30 | syl2anr | ⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ 𝐾 ) ∘ 𝐹 ) = ( 𝑦 ∈ ℕ0 ↦ ( ( 𝐺 ‘ 𝐾 ) ‘ ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 32 | eqidd | ⊢ ( 𝑥 = 𝑦 → 𝐾 = 𝐾 ) | |
| 33 | 32 | cbvmptv | ⊢ ( 𝑥 ∈ ℕ0 ↦ 𝐾 ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) |
| 34 | 7 33 | eqtrdi | ⊢ ( 𝑛 = 𝐾 → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ) |
| 35 | 34 | adantl | ⊢ ( ( 𝐾 ∈ ( 0 ..^ 𝑁 ) ∧ 𝑛 = 𝐾 ) → ( 𝑥 ∈ ℕ0 ↦ 𝑛 ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ) |
| 36 | 10 | mptex | ⊢ ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ∈ V |
| 37 | 36 | a1i | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ∈ V ) |
| 38 | 5 35 9 37 | fvmptd | ⊢ ( 𝐾 ∈ ( 0 ..^ 𝑁 ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ) |
| 39 | 38 | adantl | ⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( 𝐺 ‘ 𝐾 ) = ( 𝑦 ∈ ℕ0 ↦ 𝐾 ) ) |
| 40 | 26 31 39 | 3eqtr4d | ⊢ ( ( 𝐹 ∈ ( Base ‘ 𝑀 ) ∧ 𝐾 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ 𝐾 ) ∘ 𝐹 ) = ( 𝐺 ‘ 𝐾 ) ) |